

1

Abstract— This paper is aimed to discuss congestion control and

review TCP functionality that provides a congestion control

techniques of handling buffer –overflows, loss of packets and

congestions that we experience over a network. The primary

focus is on discussing the four intertwined algorithms, namely

slow start, congestion avoidance, fast retransmit, and fast

recovery, which will help us to solve this congestion problem. The

algorithms are rooted in the idea of achieving network stability.

We demonstrate in this paper how the implementation of this

algorithm reduces congestion over congested network and more

importantly how it scales gracefully in the network environment

by providing high utilization and low queuing delays.

Index Terms—congestion avoidance, congestion window, fast

retransmit, fast recovery, slow start, TCP

I. INTRODUCTION

n the 1920’s William L. Potts [1] faced with the problem of

persistent heavy traffic in Detroit Michigan, invented a four-

way three traffic light system. This invention was primary to

address the issue of increasing influx of automobiles. Potts

used a simple algorithm of color-selection signal where Red

(Road is busy), green (Road is free), and amber (warning road

is getting congested) colors are use to regulate the traffic

congestion.

In the computer network environment, congestion problem

is analogous to heavy traffic problem experienced during

Potts‘s time. Given that in these recent times, Internet and

computer networks are experiencing an explosive growth.

Most daily transactions and activities are done via the network

in the form of sharing of files, transmitting of data or

computing resources. This increasing growth of computer

network thus has posed severe congestion problems. For

example, it is very common now to hear that internet gateways

are tremendously falling down. Unfortunately these gateways

(routers) do not have robust storage capacity, and situation

deteriorates most times when congestion occurs, whereby the

datagrams arriving at the congested router grows until the

router reaches its storage limit and begins to drop datagrams.

The most delicate aspect of this situation is that most times, the

two endpoints (sender and receiver), when confronted with this

kind of problem, do not usually know the details of what the

cause of the congestion is and where and why it occurred. We

know that TCP uses timeout and retransmission technique in

responding to congestion (data loss). Therefore, the endpoints

normally assume that the timeout is due to simple delay in the

network. In response to resolve congestion, they retransmit the

presumed loss datagram by sending more datagrams, which

however worsen the congestion instead of solving the problem.

The whole process, if not limited, renders the network useless

as more and more datagrams are been retransmitted in an

attempt to alleviate the congestion problem. This situation

often results to what is known as congestion collapse.

In this seminar paper, we present the algorithm that can

solve this problem, in order to avoid this chaos of congestion

collapse. We will discuss the implementation of TCP standard

using the following techniques: slow-start and congestion

avoidance [2].Basically, the two techniques primarily reduce

the rate of datagrams injected in the network but do not

address the issue of network throughput and efficiency. In

order to maintain the robustness of the network and achieving

network utilization and throughput, this paper will also give a

comprehensive treatment on some approaches to handle

network “throughput” and “efficiency” by introducing fast

recovery and fast retransmit techniques. We will show how the

algorithms are derived from this principle and what effect they

have on traffic over congested networks. The scope of our

discussion is limited to the stated algorithm to enhance

network stability by forcing the transport connection to follow

the techniques. References will be made from different sources

and RFC Documents as a primary source [3] .

II. BACKGROUND - TCP PROTOCOL

A. User Datagram Protocol

In the TCP/IP protocol suite, UDP provides primary

mechanism that application programs use to send datagrams to

TCP Congestion Control

Onwutalobi, Anthony Claret

Department of Computer Science

University of Helsinki,

Helsinki Finland

onwutalo@cs.helsinki.fi

I

2

other application programs [2]. It uses the underlying Internet

layer to transport a message from one machine to another, and

provide unreliable, connectionless datagram delivery. Packets

can be lost or destroyed when network hardware fails, or when

network becomes heavily loaded. [2].In addition,

understanding that UDP is connectionless, most application

packets sent, may arrive out of order or sometimes delivered

after a long delay. Knowing fully well that most application

program is sent in a large volume, it becomes a tedious task for

programmers to write programs that will solve the reliability

problem. Although it is obvious that such task may not be

successful. It has then become necessary to develop general

purpose program or algorithm that will ensure reliable stream

delivery and also address the issue of data loss and damage on

transit. This new protocol will provide platform independent

and also cover wider-range of different application programs

while hiding the details of networking to enable a uniform

interface for the stream transfer services [4]

 According to [2], the properties of reliable delivery services

were discussed in details which guarantees in principle, a

reliable delivery with no duplicate or data loss as opposed to

UDP. The success story behind this TCP technique is known

as positive acknowledgement with retransmission. This

mechanism requires both endpoints to be on a constant

communication whereby the sender sends application packages

(datagram) and wait for an acknowledgement from the

receiver. The sender stores the history of the packages sent and

also set a timer when it sends a package. It waits for a reply for

a set periodic and will retransmit the package if no reply ACK

received.

This protocol solves the problem of connectionless UDP

protocol by ensuring the reliability of data transmitted over the

network. However it is too mechanical and it wastes a lot of

network bandwidth. It also has poor utilization of network

resources because the sender must delay sending a new

package until it receives an acknowledgement for the previous

packet [2].

This limitation propels a research and introduction of

sliding window. This sliding window protocol keeps the

network completely saturated with the packets. It provides a

reasonable throughput than a simple positive

acknowledgement protocol. A sliding window protocol keeps

track of transmitted and acknowledged packets. Since the

timer is set for each datagram sent over the network, the lost

packets are easily identified and retransmitted once their timer

had expired. This sliding window protocol is connection

oriented which guarantees data connection. It also born several

techniques that help in the enhancement of effective and

efficient data flows in the network.

In the diagram below, is an example on how Positive

acknowledgement protocol transfer data. It transmits three

packets using a sliding window protocol. The key concept is

the sender can transmit all packets in the window without

waiting for an acknowledgement. [5]

Figure 1: Positive Acknowledgement Protocol Transfer

III. CONGESTION CONTROL

According to [2], congestion is a condition of severe delay

caused by an overload of datagrams at one or more switching

point (router). On the other hand, congestion control is a

distributed algorithm to share network resources among

competing users. [7] This control is been carried out by the

Transmission Control Protocol (TCP)

In the past, TCP started its connection by allowing the sender

to send maximum number of segments advertised by the

receiver without considering if there are slower links between

the sender and the receiver or if the router has enough space

capacity to handle the multiple injections of packets. This

earlier version of TCP was good for two endpoints that

exchange data on the same network. Problems can set in

immediately either endpoint is in a different network. Another

problem can occur if the router storage capacity is not enough

to hold the packages sent. Due to this limitation, there was a

need to create a congestion control algorithm that can handle

these problems. According to RFC [3] the most eligible

technique to tackle this problem is using an algorithm called

slow start [2]

3

IV. SLOW START

The slow start algorithm regulates the flow of datagrams in the

network to avoid congestion. With slow start algorithm, TCP

monitors to make sure that the rate new packets are sent over

the network are the rate at which the acknowledgements are

returned by the receiver. Slow start is normally used when

starting traffic on a new connection or when recovering from

congestion. In this process, extra datagram can only be sent

through the network only when there is a receipt of

acknowledgement from the receiver. The slow-start window is

intended to be incremented exponentially. Below is the

algorithm of slow start from [4]

Add a congestion window, cwnd, to the per-connection state.

When starting or restarting after a loss, set cwnd to one

packet

On each Ack for new data, increase cwnd by one packet.

When sending, send the minimum of the receiver’s

advertised window and cwnd. [3]

With this algorithm, TCP regulates the data flows and tries to

maintain a congestion window by limiting the total number of

unacknowledged packets that may be in transit. Slow start

avoids swamping the entire network with extra traffic

immediately after congestion clears or when new connections

are started. The sender initializes the congestion window to 1,

and sends a datagram to the other end and waits to receive an

acknowledgement before another packet will be sent. On

acknowledging that the receiver has received the datagram

through the Ack sent by the receiver, the sender sends 2 more

packets; one for the Ack and one because an Ack opens the

congestion window by one packet and wait for Ack. When the

two acknowledgments arrive the two endpoint increase the

congestion window by 2, So TCP can send 4 segments.

Acknowledgment of those will increase the congestion window

to 8 and so on. This is what we mean by exponential increase.

Actually, the slow start window increase is not fully

exponential: it takes time Rlog2 W where R is the round trip-

time and W is the window size in packet [9] what this means is

that the rate window open is very fast that it does not have any

serious effect in performance even on the links with a large

bandwidth-delay product [9]

Figure 2:

The diagram below shows the scenario of TCP slow-start

mechanism:

Assumption: The maximum congestion window size is 8.

Therefore, the congestion window size will not increase after it

reaches the size 8. The sender starts with the congestion

window size 1. Upon each ACK from the receiver, the sender

increases the congestion window size by 1. For example, when

the sender receives "ACK 1", its congestion window size is

increased to be 2. Thus, in the next window, the sender can

send 2 packets consecutively without receiving any ACKs

from the receiver.

To avoid increasing the window size too quickly and causing

additional congestion, TCP also imposes an additional

restriction. TCP checks the congestion window of the sender,

once it has reached one half of its initial size before congestion

or has exceeded a threshold ssthresh, or a packet is lost, it

enters a congestion avoidance phase and reduces the rate of

increment. According to [8], slow start usually ends after a loss

since the initial ssthresh is large. However, ssthresh is updated

at the end of each slow start, and will often affect subsequent

slow starts triggered by timeouts .

V. CONGESTION AVOIDANCE.

As mentioned in [2] congestion avoidance is a TCP restriction

technique of regulating slow start exponential duplication

method to avoid flooding the network with segment which

could cause congestion. The fastest method of determining

when congestion avoidance should be implemented is once the

4

receiver receives Ack from the sender over a lost packet. Since

TCP sets a timer for every packet sent, if the timers are in

good condition, it is possible to state with confidence that the

timeout that occurred is not a broken timer but indicates a lost

packet. Since we know that packet can get lost for two reasons:

either because they are damaged in transit or the network is

congested and somewhere on the part was insufficient buffer

capacity. [8] For this reason, the TCP will enter into

congestion avoidance state to try to reduce traffic.

Furthermore, to implement congestion control technique here,

we must note that this algorithm must encompass a strategy

that must be able to signal the transport that congestion is

occurring and the endpoints must also have a policy that

decreases the use of network once this signal is received and

can also increase the network once the network become stable.

According to [3] such algorithm is called multiplicative

decrease congestion avoidance:

How it works:

Upon loss of a segment, reduce the congestion window by half

down to a minimum of at least one segment. For those

segments that remain in the allowed window, back off the

retransmission timer exponentially.

With this algorithm, we see that TCP reduces the congestion

window by half for every loss.

This decreases the window exponentially thereby reducing the

traffic in the network. If the traffic persists, the decrease can

even reduce transmission to a single datagram and continue to

double timeout values before retransmitting. The main idea is

to reduce significantly the traffic reduction to allow routers

enough time to clear the datagrams already in their queues.

The Combined Slow Start with Congestion Avoidance

Algorithm / source code

Although this two algorithm have different objectives but they

are usually combined together to control congestion, In this

sense, the sender maintains two state variables for congestion

control: a slow start/ congestion window, cwnd, and a

threshold size, ssthresh, to switch between the two algorithm.

The sender normally sends the minimum of the congestion

window and window advertised by the receiver. Once there is

a timeout, half of the current cwnd size is stored in ssthresh

this is the multiplicative decrease part of the congestion

avoidance mentioned above, then cwnd is set to 1 packet (this

initiates slow start). Once the sender acknowledged the receipt

of new transmission the sender does [8]

If (cwnd < ssthresh)

/* if we‘re still doing slow start [8]

 * open window exponentially */

Cwnd +=1;

Else

 /* otherwise do Congestion

 *Avoidance increment – by -1 */

Cwnd +=1 /cwnd;

The slow start will then open the window to solve the problem

by halving the window that cause the problem, then the

congestion avoidance will now follow suit by slowly

increasing the window size to probe for more bandwidth

becoming available on the path.

VI. TAHOE AND RENO TCP OVERVIEW

Tahoe which was the initial release of TCP that used

retransmission scheme mentioned above always waits for the

timer to expire before retransmitting. In 1990, TCP Reno was

introduced that had changes mainly introducing the new

concept of fast recovery and fast Retransmit that has higher

throughput especially where only occasional loss occurs. TCP

Reno improves retransmission during the fast recovery phase

of TCP Reno.

Differences of Tahoe and Reno

Tahoe and Reno have different ways of detecting and handling

of lost packets.

Tahoe detects that the packet is lost when the timeout set with

the sent packet expires. This means that an Ack is received

only after the timeout set had expired. Tahoe will react to this

by reducing congestion window to 1 MSS, and reset to slow-

start state.

Whereas for Reno, if three duplicate Acks are consecutively

received, it indicates there is congestion. Reno will halve the

congestion window and quickly perform a “fast retransmit”.

Reno does not wait for a timeout to expire. Eventually when a

timeout is received, Reno enters a phase called fast recovery

and slow-start is used as it is with Tahoe.

 Reno utilizes the network bandwidth in an efficient way

without having to wait for any acknowledgment. Below we

will explore more on Reno fast retransmit below.

VII. FAST RETRANSMIT

As mentioned above, fast recovery and fast retransmit are

based on the Reno version of TCP. Before describing its

functions, we must remember that TCP may generate an

immediate duplicate Acknowledgment when segment are

received in out of order manner. The purpose of this

duplication is to let the sender know that segments sent are

received out of order and to inform the sender what sequence

5

number is expected in the next transmission. We know that

TCP does not know whether the duplicate Ack received is

caused by a lost of segment or due to reordering of segment.

TCP waits until small number duplicate Ack is received. It is

assumed that when the problem is about the reordering of

segments only two ACKs are sent from the receiver, before the

reordered segment are processed and generate a new Ack.

Moreover, when three or more duplicate are received is a clear

indication that the segment is lost. In this case, TCP will then

perform a retransmission of the missing segment without

waiting for the timer expiration. We will show the algorithm

on how fast retransmit is implemented with fast recovery

below.

VIII. FAST RECOVERY

In Reno, congestion avoidance is performed after fast

retransmit sends the missing segment, since the lost packet is

an indication of possible congestion. This algorithm is called

fast recovery. This algorithm has worked remarkably well and

believed to have prevented lot congestion on the Internet. In

the implementation of this algorithm, slow start is not

performed. The reason for not performing slow start is to

avoid reducing the flow between the two endpoints abruptly as

there are still indications of communication. Since receiver can

only generate an Ack when a segments is received, this

confirms that the segment sent arrive at the receiver buffer, so

slow start will not be necessary in this case.

Fast recovery is believed to be an improvement which has

allowed high throughput under reasonable congestions and

scaled six orders of magnitude in size, speed, load and

connectivity. It has also been relatively efficient at large

windows.

The Source Code of Fast Retransmit with Fast Recovery

If Number of DUP-ACK received = 3

 ssthresh = CWND / 2;

 Retransmit the lost segment ;

 CWND = sshthresh + 3 ; /* 3 is for 3 DUP-ACKs */

 For each next DUP-ACK

 Increment CWND by 1. /* i.e. CWND = CWND + 1.

This inflates the CWND in order to reflect segment that has

left the network */

 If allowed by CWND and Receiver's Advertised Window

 Transmit a segment (if any....)

 If Not DUP-ACK /* i.e. New/Fresh ACK */

 CWND = ssthresh /* Deflating the window */

 Call Congestion Avoidance Algorithm

IX. CONCLUSION

In this seminar paper, we have identified the possible causes of

congestion over the network. We have also discussed the four

main intertwined algorithms that help to control congestion

over the network. We also saw how TCP implements flow

controls by having the receiver advertise the amount of data it

is willing to accept. The current TCP protocol specifies

exponential back off for retransmission timers and congestion

avoidance algorithm like slow start. However, we noted the

limitation of slow start and its inefficient utilization of

network. Finally, we discussed TCP Reno fast retransmit and

fast Recovery. We saw that the introduction of TCP Reno

changed the way datagram are exchanged. TCP Reno has

performed remarkably well and has prevented severe

congestion in the Internet. Although these algorithms have

great potency in handling congestion, their limitation abounds.

More reliable algorithms like RED and others have been

designed to handle TCP synchronization, improve throughput

and fairness.

X. APPENDIX A

Combine slow start and Congestion Avoidance Algorithm

• Initialization for a given connection

• Sets cwnd to one segment and ssthresh to 65535

bytes

• The TCP output routine never sends more than

minimum of cwnd and the receiver’s advertised

window

• When congestion occurs (indicated by a timeout or

the reception of duplicate ACKs),

• One-half of the current window size (the minimum

of cwnd and the receiver’s advertised window, but at

least two segments) is saved in ssthresh.

• Additionally, if the congestion is indicated by a

timeout, cwnd is set to one segment (slow start)

• When new data is acknowledged by the other end,

increase cwnd, but the way it increases depends on

whether TCP is performing slow start or congestion

avoidance. [3]

XI. APPENDIX B

The fast retransmit and fast recovery algorithms are usually

implemented together as follows

1. When the third duplicate ACK in a row is received,

� set ssthresh to one-half the current congestion window,

cwnd,

o but no less than two segments.

� Retransmit the missing segment.

6

o Set cwnd to ssthresh plus 3 times the segment

size.

This inflates the congestion window by the number of

segments that have left the network and which the other end

has cached [3]

2. Each time another duplicate ACK arrives,

� Increment cwnd by the segment size.

This inflates the congestion window for the additional

segment that has left the network. Transmit a packet, if

allowed by the new value of cwnd.

3. When the next ACK arrives that acknowledges new data,

� Set cwnd to ssthresh (the value set in step 1).

� This ACK should be the acknowledgment of the

retransmission from step 1, one round-trip time after the

retransmission.

� Additionally, this ACK should acknowledge all the

intermediate segments sent between the lost packet and

the receipt of the first duplicate ACK.

� This step is congestion avoidance, since TCP is down to

one-half the rate it was at when the packet was lost.

Algorithm Adapted from the RFC [3]

REFERENCES

[1] The Great Idea Finder “Fascinating facts about the

invention of the Traffic Light William L. Potts

“http://www.ideafinder.com/history/inventions/trafficl

ight.htm Date Accessed: 10th February 2008

[2] D. E. Commer, “Internetworking with TCP/IP,

Volume 1: Principles, protocols, and Architecture,

2006

[3] W. R. Stevens, “TCP Slow Start, Congestion

Avoidance, Fast Retransmit, and Fast Recovery

Algorithms, “RFC 2001, Jan 1997

[4] http://www.tutorialsweb.com/networking/tcp-

ip/images/Fig10_SlidingWindow.jpg

[5] V. Jacobson, “Modified TCP congestion Avoidance

Algorithm, “end2end –internet April 30, 1990

ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

[6] D. X. Wei C. Jin, S. H. Low, S. Hedge, “FAST TCP”

Motivation, Architecture, Algorithm, Performance

IEEE Network, 2005

[7] V. Jacobson, “Modified TCP congestion Avoidance

Algorithm, “end2end –internet April 30, 1990

ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

[8]

 http://www.cs.rice.edu/~amsaha/Papers/Cexam/notes

/node109.html 15/02/08

[9]http://isi.edu/nsnam/directed_research/dr_wanida/dr/javisin/

actionslowstartframe.html Date Accessed 15/02/08

 CSN: 18626-2008-08-25

