

Parallel Merge Sort

Anthony-Claret Onwutalobi

Dajie Wang

Nikolay Vasilev

Helsinki, 29 April 2011

UNIVERSITY OF HELSINKI

Department of Computer Science

2

Table of Contents
1 Team Members .. 3

2 Introduction And Problem .. 3

3 Solution Method... 4

4 User Instructions .. 7

5 Evaluation of Solution (correctness, performance, scalability) .. 8

5.1 Correctness ... 8

5.1.1 Mutex .. 9

5.1.2 Deadlock .. 9

5.1.3 Starvation .. 9

5.2 Performance .. 9

6. Performance Tests .. 10

7. Summary .. 11

8. References ... 12

3

1 Team Members
This Concurrent Programming project was completed with the joint forces of Anthony-Claret Onwu-

talobi, Dajie Wang , and Nikolay Vasilev, While
 members, team the among equally

 fairly spread was project the to contribution

2 Introduction And Problem
The aim of our project was to implement a classic sorting algorithm utilising concurrency. We de-

cided on Merge Sort because of its inherent parallelism. Sorting in general has been hailed as a cor-

nerstone in Computer Science [SHG09], as many computer algorithms rely heavily upon it. Such an

algorithm is for example the classic Kruskal algorithm for constructing a minimum spanning tree of

an undirected graph [Kru56]. Merge Sort is based on the popular Divide-and-conquer approach

[CLR02], where the problem at hand is broken into smaller problems of similar nature, which are in

turn solved recursively, and the solutions are then combined.

The logic of Merge Sort itself is very straightforward. It consists in dividing the array into two parts

of approximately the same length (the difference between the lengths of the two subarrays is at most

1). The picture below illustrates the working principle behind the sorting algorithm.

The algorithm calls itself recursively every time, unless the array that has to be sorted is of length 1,

in which case the array is in order, so the algorithm just returns. Merging two sorted arrays is a key

procedure in Merge Sort. Thomas Cormen et al. [CLR02] compare it to merging two sorted packs of

cards, where we compare the two cards on top of each pack, pick the smaller one and place it face

FIGURE 1: MERGE SORT [OUL11]

4

down on top of the cards sorted so far, thus leaving the one underneath it as the new top of the old

pack (unless, of course, the chosen card was the last one in its pack, in which case we discontinue

the comparisons and place the entire pack of remaining cards face down on the pack of sorted cards).

The time complexity of Merge Sort can be easily calculated to be O(n log n), where n is the number

of elements in the array.

3 Solution Method
A question arises whether we can harness concurrency to sort the array even faster. There does not

seem to be any obstacle in general to subarrays being sorted at the same time and simply merged at

the end. One can be easily tricked into believing that this might be orders of magnitude faster or at

least faster by a constant factor. The truth is, however, very different, because while the initial array

might be split into m parts, each sorted by a different thread, executing the final merge ”all at once”

will pay through the nose. And the bigger m, the slower the final Merge will complete, thus out-

weighing any efficiency gained through concurrency. In our solution we strove to preserve and even

increase the concurrency benefit by enhancing the Merge operation and at the same time keep the

solution as simple as possible.

Our programme consists of 3 classes – ArrayObject, MergeSort and FifthAttemptAtConcurren-

cy (programme structure in Figure 2).

FIGURE 2 PROGRAMME STRUCTURE

The class ArrayObject defines a simple class that has only two private instance variables, both of

which are arrays of the type long – my_array and my_second_array. In a way this class resembles

Java's wrapper classes, such as Integer, Boolean, etc. The ArrayObject class provides two con-

structors depending on whether the user wants both arrays instantiated or just the first one. The for-

mer constructor is similar to the copy constructors known in C++, as its parameters are also Ar-

5

rayObjects. The class also implements the Java interface Runnable, which will allow for instantiat-

ing threads with ArrayObjects. The method run checks if both arrays have been instantiated or just

the first one. In the former case it assumes that both arrays are in order, so it just merges them, pre-

serving the order, and sets the first array (variable my_array) to point to the newly merged array and

the second one is set to null. Otherwise it just sorts my_array sequentially.

MergeSort contains two class methods mergeSort and merge. As their names suggest, these are the

methods needed to implement the usual sequential Merge Sort.

The class FifthAttemptAtConcurrency is where the real job is done. One of its global variables is

array_parts, which determines in how many subarrays the original array should be split. The value

of array_parts is given by the user. First, the programme reads the input file and saves its contents

into the array array_of_integers (the name is a bit misleading since it is actually an array of type

long). To minimise reading time we used the Java classes BufferedInputStream, DataInput-

Stream and FileInputStream. Next the programme divides the array_of_integers into array_parts

many subarrays and apportions each subarray to an ArrayObject. Note that here by “dividing”

and “apportioning”we mean actually copying the relevant parts of the array_of_integers into a

new array. All ArrayObjects are then saved in an array array_of_objects of the type ArrayL-

ist<ArrayObject>. Next, the programme creates a thread per each ArrayObject and, in turn, saves

all threads in an array array_of_threads of the type ArrayList<Thread>. In case the size of the

array_of_integers is not divisible by array_parts, the programme instantiates another ArrayObject

to hold the remainder, a thread with it, and adds each to the respective array. The programme

proceeds to sort the original array sequentially, measuring the time sequential sorting lasted, and

then ensures the array is in order.

FIGURE 3: PARTITIONING THE ARRAY AND STARTING EACH THREAD

6

Having done that, the programme traverses the array_of_threads, starting each thread and then en-

ters a busy wait loop (see Figure 3 above). The Concurrent bubble in the picture denotes the pool of

threads executing concurrently.

In the loop the main thread waits for two threads to die, removes them and their ArrayObjects from

the arrays array_of_threads and array_of_objects respectively and then instantiates one ArrayOb-

ject to hold both old objects' first arrays (recall that upon completion of an ArrayObject's run me-

thod, only my_array contains something and my_second_array is null). The new ArrayObject is

used to create a new thread, which is then started. When started, the new thread calls the run method

of its ArrayObject. The run method sees that both arrays have been instantiated, so it merges them.

Both the new thread and its ArrayObject are saved in the arrays array_of_threads and ar-

ray_of_objects respectively. The loop exits when the number of threads reaches one (see Figure 4

below), whereupon the main thread waits for the last thread in array_of_threads to die and then

compares the values of the first array of its ArrayObject with the values of the original sorted array.

It is easy to observe that the number of threads and ArrayObjects constantly decreases (for two

dead threads only one is instantiated), so we can be sure that the loop eventually exits. Finally, the

programme prints the time elapsed from starting all the threads to the death of the last thread and

exits, adding the time overhead incurred copying the values of the array into the ArrayObjects at

the beginning.

In our solution the usual problems associated with critical sections, namely mutual exclusion, dead-

lock and starvation were not cause for great concern, as there was little to no contention for shared

FIGURE 4: THE BUSY-WAIT LOOP

7

resources. Mutual exclusion was indeed vital lest a thread started merging two arrays that had not yet

been sorted/merged by two others. The method isAlive() of each thread precluded the possibility of

anything like this happening. While deadlock is in fact impossible, since each thread operates on

different arrays, a question arises whether starvation is. Again, threads do not share any common

resources, and a thread is instantiated to merge two sorted arrays only when it is needed, i.e. after the

arrays have been sorted, so starvation is indeed impossible.

4 User Instructions
The programme is supposed to be run on the university Ukko server. To that end the zipped package

is saved in the directory of choice on one of the Department of Computer Science machines and its

contents extracted there (right-click on package and select “Extract Here” from the drop-down

menu). A new folder, named RIOProject2011, will appear on the screen. Next establish an ssh con-

nexion with the desired cluster of the Ukko server and access the directory where you unzipped the

programme package. Open a Linux Terminal and type ssh ukkoxxx.hpc.cs.helsinki.fi. Replace xxx

with a number between 002 and 240. A full list of Ukko's nodes and current load can be found here.

The server will ask for a user name and password. Enter your Department of Computer Science user

name and password. Next, open the directory where you unzipped the package using the Unix com-

mand cd. The path of the directory is the same as the Department's melkki server, i.e. it should look

something like user@ukkoxxx:~/directory/RIOProject2011$. The scripts required on the course

page are written so that the whole programme with all its pertaining classes should be compiled with

the command ./compile.sh and run with the command ./start.sh.

The user need nod provide the name/address of the data set to the programme, as it automatically

opens the input file designated on the course page and prints on the command line. However, the

programme does ask for the number of subarrays it should partition the original array into. In the

event of an illegitimate input on the part of the user (e.g. a string “hello world” instead of a number),

the programme uses the default setting of 512 threads.

The number of threads constitutes the only difference between different test cases, since the array to

be sorted, i.e. the so called data set, has been predetermined on the project page. Figure 5 shows two

sample runs of the programme with the script start.sh, where the user enters a correct number in the

first run and the string “hello world”in the second when asked about the number of threads the

programme should use.

http://www.cs.helsinki.fi/u/jjaakkol/hpc-report.txt

8

FIGURE 5: TWO SAMPLE RUNS OF THE PROGRAMME

5 Evaluation of Solution (correctness, performance, scalability)

5.1 Correctness
After sorting the array, first sequentially and then concurrently, the programme performs an inspec-

tion of the computed results. It ensures that both arrays are in ascending order and that their corres-

ponding elements coincide. For proof of the correctness of MergeSort itself the reader is referred to

Thomas Cormen's textbook [CLR02]. For our purposes it suffices to show that the following state-

ment is an invariant of our concurrent algorithm: ”After a thread dies, its ArrayObject holds a sorted

array in its variable my_array and my_second_array is null”.

Proof. Since the thread merely executes the ArrayObject's run method, there are two possible sce-

narios:

a) the ArrayObject had only one array before the thread started executing (i.e. my_array and

my_second_array was set to null), in which case its run method used the methods in the class Mer-

geSort to sort it sequentially and then set its my_array variable to point to the sorted array. The vari-

able my_second_array remained intact.

b) the ArrayObject had both of its array variables pointing to some arrays before the start of the

thread. Observe that if this is the case, it means both arrays are already in order because only when a

9

thread has sorted an array and subsequently died, is a new ArrayObject instantiated with two ar-

rays, i.e never at the beginning, when the original array is being partitioned. In this case the thread

only merges the two sorted arrays, so the result is also a sorted array, to which variable my_array

points, and my_second_array is set to null.

We did not use any of the concurrent programming constructs we have acquainted ourselves with

during the course, such as semaphores, monitors etc. Their usage was deemed unnecessary for our

purposes, since the primitive busy-wait loop provided the functionality we needed. Note that in our

solution we do not have a critical section in the formal sense, because living threads are not sup-

posed to share resources. The three key problems associated with concurrent programming are

tackled as follows:

5.1.1 Mutex
Mutual exclusion follows from the simple fact that different threads operate on different arrays.

Merging two sorted arrays starts only after their threads have died.

5.1.2 Deadlock
Rather loosely interpreted, in this context, deadlock would be possible only if a thread enters an

infinite loop, thereby making it impossible to merge the whole sorted array. We must recall here that

each thread sorts its own portion of the original array sequentially and any array can sooner or later

be sorted. The logic of Merge Sort precludes any infinite loops and in our implementation we strove

to put this into effect. And even if infinite loops were in fact possible, an infinite loop in one thread

cannot prevent another from doing its job. An infinite loop will only result in the main thread wait-

ing indefinitely, i.e. an infinite loop in the main thread in its own right, which does not meet the

formal definition of a deadlock or starvation of the main thread.

5.1.3 Starvation
Starvation is irrelevant in this context, since threads do not share common resources they might

compete to get hold of.

5.2 Performance
Improving performance was the ultimate goal of our project. The results we achieved do not share

perhaps the glamour of competing teams. However, we did manage to bring down the algorithm's

time complexity by a constant factor of 2. The experiments we conducted showed an average of 25

sec. for sorting the array sequentially and an average of 12 sec. for our parallel implementation

(more on the experiments we conducted in the next section). The elegance of our solution lies in the

virtually unlimited number of threads our programme can utilise (variable array_parts in the code).

There are no restrictions on the number of threads (provided they are fewer than the length of the

array, of course), which, in turn, allows for better scalability. The programme can be set to use e.g.

2,4 5, 16, 31, 128 etc. threads, i.e. The number of threads does not have to be a power of 2 or a divi-

sor of the size of the original array.

10

6. Performance Tests
We ran our concurrent implementation of Merge Sort using the data set provided on the course page

as our input. We managed to minimise reading time (although this is actually extraneous to Merge

Sort itself) by dint of the Java classes BufferedInputStream, DataInputStream and FileInput-

Stream. The performance tests we conducted consisted in running our Merge Sort algorithms on the

same input (i.e. the data set), varying the number of threads used. We ran tests with 2, 4, 8, 16, 128,

256, 512, 1024, and 2048 threads, and repeated the test 10 times per thread variation. We docu-

mented the time to sort the array both sequentially and concurrently with every test run, so as to

prevent any momentary fluctuations in the load of the cluster from corrupting the results. Afterwards

we calculated the arithmetic mean speed-up factor that concurrency had contributed. By a speed-up

factor here we mean the quotient of the time it took to sort the array sequentially and the duration of

the concurrent sort. For example, if sorting the array sequentially lasted 20 sec. and concurrent sort-

ing took 10 sec., then this would constitute a speed-up factor of 2. The logs we kept are enclosed

with this report as attachment 1 and here we present a short summary of the different speed-up fac-

tors we achieved and the extent of concurrency that generated them.

As the above line chart shows (a little surprisingly), best performance is achieved with 512 threads.

It is this arrangement that broke the 9 seconds barrier and set our all-time record at 8,9 seconds. One

should take into account, however, that the current load of the cluster is essential to the actual per-

formance of the algorithm. The chart also suggests that scalability actually fails where it should

DIAGRAM 1: PERFORMANCE WITH DIFFERENT NUMBERS OF THREADS

2 4 8 16 128 256 512 1024 2048

0,00

0,50

1,00

1,50

2,00

2,50

Threads

Sp
ee

d-
up

 Fa
ct

or

Dependence Between Speed-up Factors And Threads

Speed-up factor

11

reach its peak, namely with 16 threads. Performance does improve, however, as the number of

threads increases to 512 and then slowly abates again. We are at a loss to explain the reasons behind

this phenomenon. Our conjecture is that synchronising the threads outweighs the time gain achieved

by concurrency in certain cases.

7. Summary
Our project aimed at utilising concurrency in the implementation of Merge Sort – a classic sorting

algorithm. Although inherent to Merge Sort, parallelism did not contribute any asymptotic gain to

the overall performance of the algorithm. However, our solution managed to bring down the time

needed to sort the same array by a constant factor of at least 2. One must observe that this is by far

not the best parallelisation of Merge Sort possible. Scientific literature abounds in concurrent sorting

algorithms. Yet, we decided to use our own ideas and not to refer to external resources.

As attachments we have enclosed the experiment report, and the programme code. The programme

input would be impracticable to print.

12

8. References

CLR02 Cormen, T., H., Leiserson, C. E. Rivest, R., L., Stein, C., Introduction to algorithms

(Second Edition). The MIT Press, 2002.

Kru56 Kruskal, J., B., Jr. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society, 7,1 (1956),

pages 48-50.

Oul11 Lecture slides for the Design of algorithms course. University of Oulu [Also:

https://www.raippa.fi/Ohjelmointi/2.%20Luento/140%20Lomituslajittelun%20toiminta

periaate 9.4.2011].

SHG09 Satish, N., Harris, M., Garland, M., Designing efficient sorting algorithms for

manycore GPUs. IEEE International Symposium on Parallel & Distributed

Processing, Rome, Italy, 2009, pages 1-10.

	1 Team Members
	2 Introduction And Problem
	3 Solution Method
	4 User Instructions
	5 Evaluation of Solution (correctness, performance, scalability)
	5.1 Correctness
	5.1.1 Mutex
	5.1.2 Deadlock
	5.1.3 Starvation

	5.2 Performance

	6. Performance Tests
	7. Summary
	8. References

