
International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

1

A Novel Approach of Speedy-Highly Secured Data
Transmission using Cascading of PDLZW and

Arithmetic Coding with Cryptography

Sankalp Prakash
Research Scholar

State Govt. Technical Education,
Jaipur (Rajasthan)

Mridula Purohit
Reader, Dept. of Mathematics

Vivekanand Institute of Tech. (East),
Jaipur (Rajasthan)

Abhishek Raizada
Research Scholar
Jaipur (Rajasthan)

ABSTRACT

The spread of computing has led to an outburst in the volume
of data in the communication world. The paper proposes the
cascading of two algorithms PDLZW and Arithmetic Coding
with cryptography. With the hierarchical parallel dictionary
set, the search time can be reduced significantly and all these
dictionaries are operated independently. While the results
generated by Arithmetic Coding are close to the optimal
value. Since cascaded compression may achieve the higher
compression ratio for the file but does not provide required
security aspects. Therefore, the advantage of cryptography has
been taken by XORing the compressed data with the one-time
key, providing compression and security simultaneously. This
paper proposes a new system JDCE, where compression is
provided to the data twice before encrypted it for getting it
ready for transmission.

General Terms

Arithmetic Coding, Cascaded Compression, Cryptography,
Parallel Dictionary LZW (PDLZW), One-Time Pad

Keywords

Arithmetic Coding, Cascaded Compression, Cryptography,
Parallel Dictionary LZW (PDLZW), One-Time Pad

1. INTRODUCTION

The field of Information Technology has grown up abruptly in
last decade, which pivots around data/message transmission.
There are two important factors to be considered firstly
transmission speed i.e. time taken from source to destination
and secondly data security or integrity of the data which
means to ensure that the receiver is receiving the original
message send by the sender. The length of the data/ message
may vary from a few bytes to gigabytes. Therefore it becomes
crucial to compress and cipher the data/message before
transmission. Data compression is the process of encoding the
data, so that fewer bits will be needed to represent the original
data whereby the size of the data is reduced. Cryptography is
an art of protecting information by transforming it (encrypting
it) into an unreadable format, called cipher text. Only those
who possess a secret key can decipher (or decrypt) the
message into plain text. So, a new system JDCE (Joint Double
Compression and Encryption) has been proposed in which
compression is attained by cascading of PDLZW and
Arithmetic Coding and then result of the compression is
encrypted to provide rapid transmission and triple layer
security.

Data compression has important applications in the area of
data transmission as well as data storage despite of large
capacity storage devices are available these days. Therefore,
there is need for an efficient way to store and transmit
different type of data such as text, image, audio and video to
reduce execution time and memory size [11]. The general
principle of data compression algorithm on text files is to
conjures up an assortment of ad hoc techniques such as
compression of spaces in text to tabs, creation of special codes
for common words or run length coding of picture data to
produce new text file which contains the same information but
with new length as small as possible [7]. The effective data
compression algorithm is chosen according to some scales
like: Compression Size, Compression Ratio, Compression
Time and Entropy [12]. Compression size means size of new
compressed file. Compression ratio refers to the percentage
that results from dividing the compression size by the original
uncompressed file size and then multiply it by 100. Entropy is
the number that results from dividing the compression size in
bits by the number of symbols in the original file and scales as
bits/symbol [11]. Shannon’s fundamental theorem of coding
states that, given messages randomly generated from a
model, it is impossible to encode them into less bits (on
average) than the entropy of that model [1].

LZW and the Arithmetic Coding (AC) are two of the most
appropriate compression algorithms for communication
because firstly, both are adaptive i.e. they do not require a
prior knowledge on the text to be compressed and secondly,
during the compression process they do not require transfer of
extra information from the sender to the receiver in addition to
the compressed text [5]. Many researchers published
comparative studies on the data compression techniques such
LZW, Huffman, FLC, AC, LZ-77, etc. and found LZW and
AC are the best in their own territory. LZW is appropriate
when aim is raw speed rather than compression performance.
The conventional LZW is a dictionary based compression so
it requires large amount of processing time for adjusting and
searching through the dictionary [3]. The parallel dictionary
LZW (PDLZW) has designed to overcome this problem. AC
has its own limitations. Though PDLZW and AC work on
different principles, they can be cascaded yielding higher
compression ratio while being appropriate for communication
purpose, but does not provide the full security of transmitting
data. The proposed mechanism will overcome this issue by
incorporating cryptography with the cascading of PDLZW
and AC.

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

2

2. PARALLEL DICTIONARY LZW

(PDLZW)

The basic idea of dictionary based compression technique
given by Lempel and Ziv as LZ-77. The main disadvantage of
LZ-77 is the size of buffers is very small so in 1984, Terry
Welch suggested LZW algorithm. LZW is general
compression algorithm capable of working on almost any type
of data [11]. LZW compression creates a table of string
commonly occurring in the data being compressed, searches
the table to identify the longest possible input data string that
exists in the table, and replaces the actual data with references
into the table. The table is formed during the compression at
the same time at which the data is encoded and during
decompression at the same time as the data is being decoded
[8]. It can typically compress large English text to about half
of the original sizes. However, the limit is imposed in the
conventional LZW by the fact that once the 4K dictionary is
complete, no more strings can be added; and requires large
amount of processing time for adjusting and searching
through the dictionary [7].

To improve the limitations of conventional LZW, the
dynamic LZW (DLZW) and word-based DLZW (WDLZW)
algorithms were proposed. In DLZW, the dictionary has been
initialized with different combinations of characters. It is
organized in hierarchical string tables. The baseline idea is to
store the most frequently used strings in the shorter table,
which requires fewer bits to identify the corresponding string.
The tables are updated using the move-to-front and weighting
system with associated frequency counter. During the
compression time, after the longest matching string is
recognized in the table, it is moved to the first position of its
block. The table updating process is based on the least
recently used (LRU) policy to ensure that frequently used
strings are kept in the smaller tables. This is to minimize the
average number of bits required to code a string when
compare with a single table implementation [2, 3, 7].

The WDLZW algorithm is a modified version of DLZW
that focuses on text compression by identifying each word in
the text and make it a basic unit (symbol). The algorithm
encodes the input word into literal codes and copy codes. If
the search for a word has failed, it is sent out as a literal code,
which is its original ASCII code preceded by other codes for
identification. The copy code is the address of the matching
string in the string table. However, both algorithms are too
complicated. To improve this, parallel dictionary LZW
(PDLZW) was proposed. Since not all entries of the DLZW
dictionary contains the same word size, this leads to the need
of the entire dictionary search for every character.
Consequently, the PDLZW has designed to overcome this
problem by partitioning the dictionary into several
dictionaries of different address spaces and sizes. With the
hierarchical parallel dictionary set, the search time can be
reduced significantly since these dictionaries can operate
independently and thus can carry out their search operation in
parallel [2].

2.1 Compression Algorithm for PDLZW

The PDLZW compression algorithm is based on a parallel
dictionary set that consists of m small variable-word-width
dictionaries, numbered from 0 to m-1, each of which increases
its word width by 1 byte (1B). More precisely, dictionary0 has
1B word width; dictionary1 has 2B, and so on. The actual size
of the dictionary set used in a given application can be

determined by the information correlation property of the
application.

In the algorithm, two variables and one constant are used. The
constant max_dict_no denotes the maximum number of
dictionaries, excluding the first single-character dictionary
(i.e., dictionary0), in the dictionary set. The variable
max_matched_dict_no is the largest dictionary number of all
matched dictionaries and the variable matched_addr identifies
the matched address within the max_matched_dict_no
dictionary. Each compressed codeword is a concatenation of
max_matched_dict_no and matched_addr.

Input: The string to be compressed.

Output: The compressed code words with each being a log2k-
bit codeword, which consists of max_matched_dict_no and
matched_ addr, where k is the total number of entries of the
dictionary set.

Begin:

1: Initialization.
1.1. string-1← null.
1.2. max_matched_dict_no ← max_dict_no.
1.3. update_dict_no ← max_matched_dict_no;.

update_string ← ∅{empty}.
2: while (the input buffer is not empty) do

2.1. Prepare next max_dict_no + 1 character for
searching.{max_matched_dict_no is reset to
max_dict_no initially and the dictionary number of
the dictionary set counts from 0 up to a constant
max_dict_no}

2.1.1. string-2 ← read next
(max_matched_dict_no+1) characters from
the input buffer.

2.1.2. string ← string-1║string-2. (Where ║ is the
concatenation operator.)

2.2. Search string in all dictionaries in parallel and set
the max_matched_dict_no and matched_addr.

2.3. Output the compressed codeword containing
max_matched_dict_no║matched_addr.

2.4. if (max_matched_dict_no < max_dict_no and
update_string ≠ ∅) then add the update_string to
the entry point by UP[update_dict_no] of
dictionary[update_dict_no].(UP[update_dict_no]
is the update pointer associated with the
dictionary).

2.5. Update the update pointer of the
dictionary[max_matched_dict_no + 1].

2.5.1. UP[max_matched_dict_no + 1] =
UP[max_matched_dict_no + 1] + 1

2.5.2. if UP[max_matched_dict_no + 1] reaches its
upper bound then reset it to 0. {FIFO update
rule.}

2.6. update_string ← extract out the first
(max_matched_dict_no + 2) bytes from string;
update_dict_no ← max_matched_dict_no + 1.

2.7. string-1 ← shift string out the first
(max_matched_dict_no + 1) bytes.

End {End of PDLZW Compression Algorithm.}[2]
Here is an example to illustrate the operation of the PDLZW

compression algorithm. It is assumed that the alphabet set ∑ is
{a,b,c,d} and the input string is ababbcabbabbabc . The
address space of the dictionary set is 16. The dictionary set
initially contains only all single characters: a,b,c and d. The
input string is grouped together by characters. These groups
are denoted by a number with or without parenthesis. The
number without parenthesis denotes the order to be searched

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

3

(5)

(1)

2 6

(2)

(4) (6)

4

of the group in the dictionary set and the number with
parenthesis denotes the order to be updated of the group in the
dictionary set. After the algorithm exhausts the input string,
the contents of the dictionary set and the compressed output
code words will be {a,b,c,d,ab,ba,bc,ca,abb,,,,,abba,,,} and
{0,1,4,1,2,8,8,4,2} respectively [2, 3].

Directory 0

00 00 0 a

00 01 1 b

00 10 2 c

00 11 3 d

Directory 1

01 00 4 a b (1)

01 01 5 b a (2)

01 10 6 b c (4)

01 11 7 c a (5)

Directory 2

10 00 8 a b b (3)

10 01 9

10 10 10

10 11 11

Directory 3
110 0 12 a b b a (6)

110 1 13

Directory 4
111 0 14

111 1 15

Input: a b a b b c a b b a b b a b c

 1 5 9

 3

 4

 (3) 7

 8

Output: 0 1 1 2 8 8 4 2

Figure 1: Example to illustrate the operation of PDLZW

compression algorithm.

2.2 PDLZW Decompression Algorithm:

To recover the original string from the compressed one,
reverse the operation of the PDLZW compression algorithm.
This operation is called the PDLZW decompression
algorithm. By decompressing the original substrings from the
input compressed code words, each input compressed
codeword is used to read out the original substring from the
dictionary set. To do this without loss of any information, it is
necessary to keep the dictionary sets used in both algorithms,
the same contents. Hence, the substring concatenated of the
last output substring with its first character is used as the
current output substring and is the next entry to be inserted
into the dictionary set. The PDLZW decompression algorithm
has three variables and one constant. As in the PDLZW
compression algorithm, the constant max_dict_no denotes the
maximum number of dictionaries in the dictionary set. The
variable last_dict_no memorizes the dictionary address part of
the previous codeword. The variable last_output keeps the
decompressed substring of the previous codeword, while the
variable current_output records the current decompressed
substring. The output substring always takes from the
last_output that is updated by current_output in turn.

Input: The compressed codewords with each containing
log2k-bits, where k is the total number of entries of the
dictionary set.
Output: The original string.
Begin:
1: Initialization.

1.1. if (input buffer is not empty) then
current_output ← empty; last_output ← empty;
addr ← read next log2k-bit codeword from input
buffer. {Where codeword = dict_no ║ dict_addr
and ║ is the concatenation operator.}

1.2. if (dictionary[addr] is defined) then
current_output ← dictionary[addr];
last_output ← current_output;
output ← last_output;
update_dict_no ← dict_no[addr] + 1.

2: while (the input buffer is not empty) do
2.1. addr ← read next log2k-bit codeword from input

buffer.
2.2. {output decompressed string and update the

associated dictionary.}
2.2.1. current_output ← dictionary[addr].
2.2.2. if (max_dict_no ≥ update_dict_no) then

add (last_output ║ the first character of
current_output) to the entry pointed by
UP[update_dict_no] of
dictionary[update_dict_no].

2.2.3. UP[update_dict_no]←UP[update_dict_no]+
1.

2.2.4. if UP[update_dict_no] reaches its upper
bound then reset it to 0.

2.2.5. last_output ← current_output;
Output ← last_output;
update_dict_no dict_no(addr) + 1.

End {End of PDLZW Decompression Algorithm.}
The operation of the PDLZW decompression algorithm can be
illustrated by the following example. Assume that the
alphabet set ∑ is and input compressed codewords are {0, 1,
4, 1, 2, 8, 8, 4, 2}. Initially, the dictionaries numbered from 1
to 3 shown in Figure 1 are empty. By applying the entire input
compressed codewords to the algorithm, it will generate the
same content as is shown in Figure 1 and output the
decompressed {a, b, ab, b, c, abb, abb, ab, c}substring [2, 3].

3. Arithmetic Coding Algorithm (AC)

In Arithmetic Coding, method for lossless data compression, a
message is represented by an interval of real numbers between
0 and 1. As the message becomes longer, the interval needed
to represent it becomes smaller, and the number of bits needed
to specify that interval grows. Successive symbols of the
message reduce the size of the interval in accordance with the
symbol probabilities generated by the model. The more likely
symbols reduce the range by less than the unlikely symbols
and hence add fewer bits to the message [1]. This method is
adaptive and does not need the probabilities of the symbols in
the input in advance. These probabilities could be
dynamically updated as input is read, and mapped into the
interval [5].

The AC has advantages over Huffman Coding method (HC).
HC indeed achieves “minimum redundancy.” In other words,
it performs optimally if all symbol probabilities are integral
powers of ½. But this is not normally the case in practice;
indeed, Huffman coding can take up to one extra bit per
symbol. The worst case is realized by a source in which one
symbol has probability approaching unity. Symbols
emanating from such a source convey negligible information
on average, but require at least one bit to transmit [1].
Arithmetic coding dispenses with the restriction that each
symbol must translate into an integral number of bits, thereby
coding more efficiently. It actually achieves the theoretical
entropy bound to compression efficiency for any source

max_matched_dict_n matched_addr

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

4

[13].In this article, the coding algorithm is adapted from an
algorithm originally presented in C by Mark Nelson [16].

In order to construct the output number, the symbols being
encoded have to have a set probabilities assigned to them. In
general, using AC depends on creating a statistical model of
the data. For example, to encode the random message “BILL
GATES”, would have a probability distribution. Once the
character probabilities are known, the individual symbols
need to be assigned a range along a probability line, which is
nominally 0 to 1. It doesn’t matter which characters are
assigned which segment of the range, as long as it is done in
the same manner by both the encoder and the decoder. The
nine character symbol set use here would look like this:

Table 1. Initial Assignment

Character Probability Range

SPACE 1/10 0.00 – 0.10

A 1/10 0.10 – 0.20

B 1/10 0.20 – 0.30

E 1/10 0.30 – 0.40

G 1/10 0.40 – 0.50

I 1/10 0.50 – 0.60

L 2/10 0.60 – 0.80

S 1/10 0.80 – 0.90

T 1/10 0.90 – 1.00

 Each character is assigned the portion of the 0-1
range that corresponds to its probability of appearance. Note
also that the character “owns” everything up to, but not
including the higher number. So the letter ‘T’ in fact has the
range 0.90 – 0.9999….The most significant portion of an
arithmetic coded message belongs to the first symbol to be
encoded. When encoding the message “BILL GATES”, the
first symbol is “B”. In order for the first character to be
decoded properly, the final coded message has to be a number
greater than or equal to 0.20 and less than 0.30. To encode
this number is to keep track of the range that this number
could fall in. So after the first character is encoded, the low
end for this range is 0.20 and the high end of the range is 0.30.

After the first character is encoded, range for output number is
now bounded by the low number and the high number. What
happens during the rest of the encoding process is that each
new symbol to be encoded will further restrict the possible
range of the output number. The next character to be encoded,
‘I’, owns the range 0.50 through 0.60. If it was the first
number in the message, set low and high range values directly
to those values. But ‘I’ is the second character. So ‘I’ owns
the range that corresponds to 0.50-0.60 in the new sub range
of 0.2 – 0.3. This means that the new encoded number will
have to fall somewhere in the 50th to 60th percentile of the
currently established range. Applying this logic will further
restrict number to the range 0.25 to 0.26.

The algorithm to accomplish this for a message of any length
is shown below:

Set low to 0.0
Set high to 1.0
While there are still input symbols do
 get an input symbol

 code_range = high - low.
 high = low + range*high_range(symbol)
 low = low + range*low_range(symbol)
End of While
output low

So the final low value, 0.2572167752 will uniquely encode
the message “BILL GATES” using present encoding scheme.

Given this encoding scheme, it is relatively easy to see how
the decoding process will operate. Find the first symbol in the
message by seeing which symbol owns the code space that the
encoded message falls in. Since the number 0.2572167752
falls between 0.2 and 0.3, the first character must be “B”. So
remove the “B” from the encoded number. Since the low and
high ranges of B, their effects can be removed by reversing
the process that put them in. First, subtract the low value of B
from the number, giving 0.0572167752. Then divide by the
range of B, which is 0.1. This gives a value of 0.572167752.
Now it can be calculated where that lands, which is in the
range of the next letter, “I” and so on.

The algorithm for decoding the incoming number looks like
this:

get encoded number
Do
 find symbol whose range straddles the encoded number
 output the symbol
 range = symbol low value - symbol high value
 subtract symbol low value from encoded number
 divide encoded number by range
until no more symbols

In summary, the encoding process is simply one of narrowing
the range of possible numbers with every new symbol. The
new range is proportional to the predefined probability
attached to that symbol. Decoding is the inverse procedure,
where the range is expanded in proportion to the probability
of each symbol as it is extracted.

3.1 Practical Matters

The process of encoding and decoding a stream of symbols
using AC is not too complicated. But at first glance, it seems
completely impractical. Most computers support floating
point numbers of up to 80 bits or so. As it turns out, AC is the
best accomplished using standard 16-bit and 32-bit integer
math. No floating point math is required, nor would it help to
use it. What is used instead is an incremental transmission
scheme, where fixed size integer state variables receive new
bits in at the low end and shift them out the high end, forming
a single number that can be as many bits long as are available
on the computer’s storage medium.

The previous section has shown how the algorithm works by
keeping track of a high and low number that bracket the range
of the possible output number. When the algorithm first starts
up, the low number is set to 0.0, and the high number is set to
1.0. The first simplification made to work with integer math is
to change the 1.0 to 0.999…., or .111… in binary.

In order to store these numbers in integer registers, first justify
them so the implied decimal point is on the left hand side of
the word. Then load as much of the initial high and low values
as will fit into the word size. The implementation uses 16-bit
unsigned math, so the initial value of high is 0xFFFF, and low
is 0. The high value continues with FFs forever, and low
continues with 0s forever, so those extra bits can be shifted in
with impunity when they are needed. If imagine the “BILL

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

5

GATES” example in a 5 digit register, the decimal equivalent
of setup would look like this:

HIGH: 99999
LOW: 00000

In order to find the new range numbers, it is needed to apply
the encoding algorithm from the previous section. First
calculate the range between the low value and the high value.
The difference between the two registers will be 100000, not
99999. This is because it is assumed the high register has an
infinite number of 9′s added on to it, so need to increment the
calculated difference. Then compute the new high value using
the formula from the previous section:

high = low + high_range(symbol)

In this case the high range was 0.30, which gives a new value
for high of 30000. Before storing the new value of high, it is
needed to decrement it, once again because of the implied
digits appended to the integer value. So the new value of high
is 29999. The calculation of low follows the same path, with a
resulting new value of 20000. So now high and low look like
this:

HIGH: 29999 (999…)
LOW: 20000 (000…)

At this point, the most significant digits of high and low
match. Due to the nature of the algorithm high and low can
continue to grow closer to one another without quite ever
matching. This means that once they match in the most
significant digit, that digit will never change. So the output
can be obtained of that digit as the first digit of the encoded
number. This is done by shifting both high and low left by one
digit, and shifting in a 9 in the least significant digit of high.

As this process continues, high and low are continually
growing closer together, and then shifting digits out into the
coded word.

This scheme works well for incrementally encoding a
message. There is enough accuracy retained during the double
precision integer calculations to ensure that the message is
accurately encoded. However, there is potential for a loss of
precision under certain circumstances.

The cumulative frequency table is stored in frequency orders
to minimize the number of updates to it after every symbol is
processed. Translation tables of character to index and index
to character are used to simplify the process of sorting the
cumulative frequency table. These translation tables are also
adjusted whenever the cumulative frequency table updated.
To overcome the overflow and underflow problems of the
integer arithmetic, frequencies are scaled down by a
normalization factor at regular interval [5].

4. Cascading of PDLZW and AC

Each compression algorithm has its own limitations and this is
true with PDLZW and AC too. So solution to overcome the
weakness of one compression technique has been found by
combining it to another compression technique. This process
is known as cascaded compression. In this process, the raw
data is given to the PDLZW encoding algorithm. The output
of the PDLZW is given to the AC for further compression.
The decompression process is totally reversing [9]. Figure 2
shows the block diagram of cascading of PDLZW and AC.

Figure 2: Block Diagram of Cascading of PDLZW and

Arithmetic Coding.

 Table 2 shows the results of implementation of
Cascading of PDLZW and Arithmetic Coding on various text
files.

Table 2. Implementation Results of Cascading of PDLZW

and AC

File Name Original

Size (Bytes)

After Cascading

Compression

File Size

(Bytes)

Compression

Ratio

new.txt 261 97 62.83
file1.txt 12288 948 92.88
file2.txt 68608 2560 96.26
file3.txt 88064 2867 96.74
main.txt 872448 4505 94.83

5. CRYPTOGRAPHY

In this fast-paced technological world the importance of
information and communication systems is escalating with the
increasing significance and quantity of data that is
transmitted. Unfortunately systems and data are increasingly
vulnerable to a variety of threats, such as unauthorized access
and use, misappropriation, alteration, and destruction.
Cryptography is the foundation of all data as well as
information security aspects. Classical cryptosystems is very
easy to understand, easily implemented and very easy to be
broken. New forms of cryptography came after the
widespread development of computer communications. In
data and telecommunications, cryptography is necessary when
communicating over any untrusted medium.

In the present scenario the cryptographic techniques have
become the immediate solution to protect information against
third parties. These techniques required that data and
information should be encrypted with some sort of
mathematical algorithm where only the party that shares the
information could possible decrypt to use the information.
Within the context of any communication, there are some
specific security requirements includes (1) Authentication
which means the process of providing one’s identity; (2)
Confidentiality that ensures no one can read the message
except the intended receiver; (3) Integrity for assuring the
receiver, the received message has not been altered in any way
from the original and (4) Non-repudiation is a mechanism to
prove that the sender really send this message [19].

Cryptography itself splits into here main branches:

(1) Symmetric (or Private-Key) Algorithm: two parties
have an encryption and decryption method for which
they share a secret key.

Raw Data PDLZW

Encoder

Arithmetic

Coding Encoder

Compressed Data

Original

Data

PDLZW

Decoder

Arithmetic

Coding Decoder

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

6

(2) Asymmetric (or Public-Key) Algorithm: a user
possesses a secret key (private key) as in symmetric
cryptography but also a public key.

(3) Hybrid Cryptography: symmetric and asymmetric
algorithms (and often also hash functions) are all used
together.

Further the symmetric cryptography can be divided in stream
ciphers and block ciphers. Stream ciphers encrypt bits
individually. This is achieved by adding a bit from a key
stream to a plain bit. Block ciphers encrypt an entire block of
plain text bits at a time with the same key. In stream ciphers
each bit xi is encrypted by adding a secret key stream bit si
modulo 2. If arithmetic modulo 2 is done, the only possible
values are 0 and 1 because if a number is divided by 2 the
only possible remainders are 0 or 1. If the truth table of
modulo2 addition is drawn then it is found that it is similar to
the exclusive-OR (XOR) gate. So the XOR operation plays a
major role in modern cryptography.

Though how good the compression techniques are, they do
not provide security of data/message from intruders, hackers
and code-breakers. So the compressed data must be encrypted
to provide authenticity, confidentiality, integrity and non-
repudiation.

6. NEW PROPOSED 3-TIER SYSTEM

(JDCE)

This paper proposes a new 3-tier system that provides double
compression with cryptography for speedy-highly secured
data transmission. In this system, first compress the raw data
using PDLZW encoder (Tier-1), and the output of this
encoder is redirected to AC encoder (Tier-2). That is how the
highly compressed data is achieved. Since the compression
technique are not secured, so the cryptography has been
integrated with the compression techniques. The output of
Tier-2 is a number which is actually the compressed data. In
this paper a truly unbreakable cipher: the One-Time Pad
(OTP) is being used [21]. A stream cipher for which (1) the
key stream s0, s1,s2,… is generated by a true random number
generator (2) the key stream is only known to the legitimate
communicating parties, and (3) every key stream bit si is only
used once, is called a One-Time Pad. The OTP is
unconditionally secure [21]. Obtained number from Tier-2 is
encrypted using private key encryption technique by XORing
it with OTP which is a random key as long as message (Tier-
3). This one time key is used to encrypt and decrypt a single
message, and then discarded. Each new message requires a
new key of same length as a new message. The output is
highly compressed and secured. The Figure 2 has been
modified here to achieve JDCE as Figure 3.

Figure 3: Block Diagram of Proposed 3-Tier System

(JDCE).

7. CONCLUSION

The proposed technique 3-Tier System (JDCE) provides an
excellent integration of data compression by cascading of
PDLZW and Arithmetic Coding algorithms along with the
cryptography to enhance the data security and transfer rate
during data communication. In this technique the data size can
be reduced by using cascaded compression technique and
after that compressed data can be encrypted to provide the
data security. The present network scenario demands
exchange of information with reduction in both space
requirement for data storage and time for data transmission
along with security. The proposed technique fulfils all such
requirements as this technique use the concept of data
compression and encryption. This paper can be extended for
the storage of files.

8. REFERENCES

[1] Ian H. Witten, Radford M. Neal, and John G. Cleary.
Arithmetic coding for data compression. Commun.
ACM, 30(6):520–540, June 1987.

[2] Ming-Bo Lin, Jang-Feng Lee, and Gene Eu Jan. A
lossless data compression and decompression algorithm
and its hardware architecture. IEEE Trans. Very Large
Scale Integr. Syst., 14(9):925–936, September 2006.

[3] Ming-Bo Lin. A hardware architecture for the lzw
compression and decompression algorithms based on
parallel dictionaries. J. VLSI Signal Process. Syst.,
26(3):369–381, November 2000.

[4] Mark Nelson and Jean-Loup Gailly. The Data
Compression Book. M&T Books, 2nd edition, 1996.

[5] Yehoshua Perl, V. Maram, and N. Kadakuntla. The
cascading of the LZW compression algorithm with
arithmetic coding. In James A. Storer and John H. Reif,
editors, Data Compression Conference, pages 277–286.
IEEE Computer Society, 1991.

Raw Data
PDLZW

Encoder

Arithmetic Coding

Encoder

Compressed Data

(CD)

Original

Data

PDLZW

Decoder

Arithmetic Coding

Decoder

One-Time Pad (OTP)

Generator

XOR

Encrypted Data

(ED)

XOR One-Time Pad (OTP)

Decrypted Data

(DD)

International Journal of Computer Applications (0975 – 8887)

Volume 57– No.19, November 2012

7

[6] Archana V. Nair. S, G. Kharmega Sundararaj and T.
Sudarson Rama Perumal. Simultaneous compression and
encryption using arithmetic coding with randomized bits.
International Journal of Computer Technology and
Electronics Engineering, 2:38–42, April 2012.

[7] P. Vichitkraivin and Orachat Chitsobhuk. An
Improvement of PDLZW implementation with a
Modified WSC Updating Technique on FPGA. World
Academy of Science, Engineering and Technology,
2009.

[8] David Salomon. Data compression-The Complete
Reference, 4th Edition. Springer, 2007.

[9] Nirali Thakkar and Malay Bhatt. Cascading of the
PDLZW compression algorithm with arithmetic coding.
International Journal of Computer Applications,
46(16):21–24, May 2012. Published by Foundation of
Computer Science, New York, USA.

[10] Ajit Singh and Rimple Gilhotra. Data security using
private key encryption system based on arithmetic
coding, May 2011.

[11] Haroon Altarawneh and Mohammad Altarawneh. Data
compression techniques on text files: A comparison
study. International Journal of Computer Applications,
26(5):42–54, July 2011. Published by Foundation of
Computer Science, New York, USA.

[12] Debra A. Lelewer and Daniel S. Hirschberg. Data
compression. ACM Comput. Surv., 19(3):261–296,
September 1987.

[13] Jiantao Zhou, Oscar C. Au, Xiaopeng Fan, and Peter H.
W. Wong. Joint security and performance enhancement
for secure arithmetic coding. In ICIP, pages 3120–3123,
2008.

[14] Raj S. Katti, Sudarshan K. Srinivasan, and Aida
Vosoughi. On the security of randomized arithmetic
codes against ciphertext-only attacks. IEEE Transactions
on Information Forensics and Security, 6(1):19–27,
2011.

[15] Helen A. Bergen and James M. Hogan. A chosen
plaintext attack on an adaptive arithmetic coding
compression algorithm. Computers & Security, pages
157–167, 1993.

[16] Mark R. Nelson. Arithmetic coding and statistical
modeling: achieving higher compression ratios. Dr.
Dobb’s J., 16(2):16–ff., December 1990.

[17] Whitfield Diffie & Martin E. Hellman. Privacy and
authentication: An introduction to cryptography, 1979.

[18] Tarek M Mahmoud, Bahgat A. Abdel-latef, Awny A.
Ahmed, Ahmed M Mahfouz, Tarek M. Mahmoud,
Bahgat A. Abdel-latef, Awny A. Ahmed, and Ahmed M.
Mahfouz. Hybrid compression encryption technique for
securing sms. International Journal of Computer Science
and Security, 2009.

[19] Gary C. Kessle. An overview of cryptography. [Online].
http://www.garykessler.net/library/crypto.html.

[20] William Stallings. Cryptography and Network Security:
Principles and Practice. Prentice Hall Press, Upper
Saddle River, NJ, USA, 5th edition, 2010.

[21] Christof Paar and Jan Pelzl. Understanding Cryptography
- A Textbook for Students and Practitioners. Springer,
2010.

 International Journal of Information, Communication and Computing Technology
Jagan Institute of Management Studies, New Delhi

1
Research Scholar, Department of Computer Science & Engineering, Jagannath University, Jaipur (Rajasthan)

2
Professor, Department of Mathematics, Vivekanand Institute of Technology (East), Jaipur (Rajasthan)

Email:
1
sankalp1973@gmail.com,

2
mridula_purohit@yahoo.co.in

Applied Hybrid Cryptography in Key-pair Generation of RSA implementation
1
Sankalp Prakash,

2
Mridula Purohit

ABSTRACT

A key is a crucial factor in any cryptographic system. Devoid of

a key, the algorithm would not produce any fruitful result. Key

is being used in encryption, decryption and other

cryptographic algorithms such as digital signature schemes

and MAC (message authentication codes). The only thing that

should be kept secret in a sound cryptosystem is the key so the

key generation is important in implementation of cryptographic

algorithms. In this paper the key generation module of the

developed application package has been discussed which

generates private and public keys in pairs using RSA and the

corresponding private keys generated are encrypted using DES

algorithm to apply hybrid cryptography.

KEYWORDS

Hybrid cryptography, Key-pair Generation, Public Key, Private
Key, RSA, DES

INTRODUCTION

In this fast-paced technological world the importance of
information and communication systems is escalating with the
increasing significance and quantity of data that is transmitted.
Unfortunately the vulnerability of systems and data are highly
rising due to variety of threats, such as unauthorized access and
use, destruction, alteration and misappropriation. Cryptography
is the foundation of all data as well as information security
aspects. Classical cryptosystems are quite simple to understand,
implement and to be broken. Many new forms of cryptographic
algorithms came after the extensive expansion of computer
communications. Cryptography is being used as a tool in an
information technology security environment to protect
sensitive and high value data that is vulnerable to unauthorized
disclosure or undetected modification during transmission or in
storage.
In the present scenario the cryptographic techniques have
become the immediate solution to protect information against
third parties. These techniques required that data and
information should be encrypted with some sort of
mathematical algorithm where only the party that shares the
information could possible decrypt to use the information [13].
Within the context of any communication, there are some
specific security requirements includes (1) Authentication
which means the process of providing one’s identity; (2)
Confidentiality that ensures no one can read the message
except the intended receiver; (3) Integrity for assuring the
receiver, the received message has not been altered in any way
from the original and (4) Non-repudiation is a mechanism to
prove that the sender really send this message. [14]
Cryptography itself splits into here main branches:

(1) Symmetric (or Private-Key) Cryptography: two parties
have an encryption and decryption method for which
they share a secret key.
Data Encryption Standard (DES) is perhaps the most
well-known and widely used symmetric key
cryptosystem in the world. It is a symmetric block
algorithm written by IBM that encodes 64-bit blocks of
data using a 56-bit key.

(2) Asymmetric (or Public-Key) Cryptography: a user
possesses a secret key (private key) as in symmetric
cryptography but also a public key.
RSA, developed by Ronald L. Rivest, Adi Shamir and
Leonard M. Adleman in 1977 at MIT [11], is still most
widely used and is believed to be secure given
sufficiently long keys and the use of up-to-date
implementations. [17] It was a practical public-key
cipher based on the difficulty of factoring very large
numbers. The idea is that it is easy to find two large
primes but it is difficult to factor the product of the two
primes.

(3) Hybrid Cryptography: Symmetric and asymmetric
ciphers each have their own advantages and
disadvantages. Symmetric ciphers are significantly faster
(Schneier states "at least 1000 times faster") than
asymmetric ciphers, but require all parties to somehow
share a secret (the key) [1]. The asymmetric algorithms
allow public key infrastructures and key exchange
systems, but at the cost of speed. So a hybrid
cryptosystem is protocol to combination of the specific
advantages of the two presently used encryption
methods – speed (symmetrical encryption) and security
(asymmetrical encryption). In other words symmetric
and asymmetric algorithms (and often also hash
functions) are all used together.

In designing security systems, it is wise to assume that the
details of the cryptographic algorithm are already available to
the attacker. This principle is known as Kerckhoffs' principle –
“only secrecy of the key provides security”, or, reformulated as
Shannon's maxim, "the enemy knows the system". The history
of cryptography provides evidence that it can be difficult to
keep the details of a widely-used algorithm secret. [15]
In the real world, key management is the hardest part of
cryptography. Keeping the keys secret is much harder.
Cryptanalysts often attack both symmetric and public key
cryptosystems through their key management. So the security
of a cryptographic algorithm rests in the key. If someone using
a cryptographically weak process to generate keys then the
whole system is weak [1].

http://en.wikipedia.org/wiki/History_of_cryptography
http://en.wikipedia.org/wiki/History_of_cryptography
http://en.wikipedia.org/wiki/History_of_cryptography

International Journal of Information, Communication and Computing Technology (IJICCT)

KEY GENERATION OF RSA IMPLEMENTATION

Key generation consists of the following two tasks:
1. Determine two prime numbers, p and q,
2. Selecting e and calculating the d.

First consider the selection of p and q because the value
n = p x q will be known to any potential opponent, to prevent
discovery of p and q by exhaustive methods, these primes must
be chosen from a sufficiently large set (i.e. p and q must be
large numbers ~ 100 digits). But the method used for finding
large primes must be reasonably efficient.
The following procedure is usually adopted for picking prime
numbers:

1. Pick an odd integer at random using a pseudorandom
number generator.

2. Pick an integer a < n at random.
3. Perform the probabilistic primality test, such as Miller-

Rabin. If n fails the test, reject n and go to step 1.
4. If n has passed a sufficient number of tests, accept n;

otherwise go to step 2.
This is tedious procedure but it is performed only when a new
key pair {KU, KR} in needed.
The traditional method of generating random numbers is to
pass the results of a pseudorandom number generator through a
hash function like MD5 or SHA and use the hash result. This is
however much slower and instead faster approach was adopted
in the development of this application. The developed
application uses the shuffling method as outlined in Computer
Generated Random Numbers [5]. Additionally it uses around
16 random entropy sources including different pseudorandom
number generators. The basic method is outlines below:
Random Number Generation

 Start with an array of dimension around 200.
 Seed all the pseudorandom number generators by

cascading one random number to seed to the next one.
The first generator is seeded with system time.

 Fill the first 100 elements with the results of the first
pseudorandom number generator.

 Fill the next 100 elements with the results of the second
pseudorandom number generator.

 When the program wants a random number, randomly
choose one from the array and send it to the program.

 Replace the number chosen in the array with a new
random number from the main random number
generator which uses all the 16 randomness entropy
sources.

Primality Test

The random number values generated are made odd and
then checked for primality using the probabilistic Miller-
Rabin algorithm.

MILLER-RABIN (n, t)
INPUT: an odd number n ≥ 3 and security parameter t ≥ 1.
OUTPUT: an answer “PRIME” or “COMPOSITE” to the

question: “Is n Prime?”
1. Write n – 1 = 2sr such that r is odd.
2. For I from 1 to t do the following

2.1. Choose a random number integer a,
2 ≤ a ≤ n –2

2.2. Compute y = ar mod n
2.3. If y ≠ 1 and y ≠ n – 1 then do the following:

j ← 1.
While j ≤ s – 1 and y ≠ n – 1 do the following:
 Compute y ← y2 mod n

If y = 1 then return (“COMPOSITE”)
j ← j + 1

if y ≠ n - 1 then return (“COMPOSITE”)
3. Return (“PRIME”).

Calculation of Private Key

Having determined prime numbers p and q, we select e and
calculated using the Extended Eulid’s algorithm:

EXTENDED_EULID(U,V)
INPUT: two nonnegative integers u and v.
OUTPUT: a vector (u1, u2, u3) such that uu1 + vv1 = u3 =
gcd(u, v)

REMARK: Temporary vectors (v1, v2, v3) and (t1, t2, t3) are
used in such a way that the following hold throughout the
calculation:
ut1 + vt2 = t3 uu1 + vu2 = u3 uv1 + uv2 = v3

1. Initialize: set(u1, u2, u3) ← (1, 0, u)
and (v1, v2, v3) ← (0, 1, v)

2. If v3 = 0 stop.
3. Set q ← └u3/ v3┘and then set:

(t1, t2, t3) ← (u1, u2, u3) – (v1, v2, v3)q
(u1, u2, u3) ← (v1, v2, v3)
(v1, v2, v3) ← (t1, t2, t3)
Return to step2

THE HYBRID ENCRYPTION ALGORITHM

A hybrid encryption algorithm has the advantages of both the
symmetric and asymmetric algorithms. This process involves
the following steps:

(1) Generate key pair i.e. Public key KU= {e, n} value
and Private Key KR= {d, n} using RSA key
generation

(2) Save the Public Key {e, n}.
(3) Encrypt Private Key {d, n} by using DES algorithm of

symmetric cryptography and then Save it in a file for
better security.

(4) Now encrypt the message by using the Public Key
KU.

(5) At the time of decryption, first the private key is
decrypted and then the encrypted message can be
decrypted using private key KR.

The complete process can be viewed in the figure 1.

Applied Hybrid Cryptography in Key-pair Generation of RSA implementation

THE DEVELOPED APPLICATION (RSAAPP)

The key generation process generates the public and private
keys in pairs. If required the keys can be viewed in hex format
after generation. The corresponding private keys generated are
encrypted using DES after taking 8-character password as user
input. Both keys are made read only. The figures 2 to 5 below
show the execution of the developed application i.e. RSAAPP-

Figure 2: DFD for Key Generation Process in RSAAPP

Figure 3: Key Generation User Interface

Figure 4 : After Completing Key Generation Process

Key Generation

Process

Decryption Process Encryption Process

Generate Key -

Pair (KU, KR)

using RSA

Algorithm

Encrypt Message

with Public Key

Message to be

encrypted

Encrypt the Private

Key (KR) using DES

Decrypt the Private

Key (KR) using DES

Decrypt the Message

using Private Key Original Message

Figure 1: Hybrid Cryptography in RSAAPP

International Journal of Information, Communication and Computing Technology (IJICCT)

Figure 5: Result of the Key Generation

CONCLUSION

Soundness of Cryptosystem relies upon two basic factors: (1)
algorithm and (2) key. The algorithm is a mathematical
function, and the key is a parameter used by that function. A
key is often easier to protect because it is a small piece of
information, and easier to change if compromised. Thus, the
security of an encryption system in most cases relies on some
key being kept secret but practically it is very difficult. An
attacker who obtains the key by theft, extortion, dumpster dives
or social engineering can recover the original message from the
encrypted data.
Cryptanalysts often attack both symmetric and public key
cryptosystems through their key management. So the security
of a cryptographic algorithm rests in the key. Therefore in the
developed application the key generation process is made
modular, efficient and fast enough so that it can generate the
highly secured key-pairs in reasonable time and then the
generated private key is being protected using DES which
provides the advantages of hybrid cryptosystem in the
RSAAPP.

REFERENCES

[1] Bruce Schneier, Applied Cryptography: Protocols,

Algorithms and Source code in C, 2nd ed. John Wiley &
Sons, New York, 1996.

[2] Alexander W. Dent, “Hybrid Cryptography,” August
2004, information Security Group, Royal Holloway,
University of London Egham Hill, Egham, Surrey, TW20
0EX,UK.

[3] Alfred Menezes, Paul C. van Oorschot and Scott A.
Vanstone, Handbook of Applied Cryptography. CRC
Press, Boca Raton, FL, 1996.

[4] ChristofPaar and Jan Pelzl, Understanding Cryptography:

A Textbook for Students and Practitioners. London:
Springer Monograph Series, 2009

[5] David W. Deley, “Computer Generated Random
Numbers,” 1991, at
http://www.virtualschool.edu/mon/Crypto/RandomNumb
erMath.

[6] RSA Algorithm online at http://www.di-
mgt.com.au/rsa_alg.html

[7] Dennis Hofheinz and EikeKiltz, “Secure Hybrid
Encryption from Weakened Key Encapsulation,” in
Advances in Cryptology - CRYPTO 2007. Springer, 2007,
pp. 553–571.

[8] L. Granboulan, “RSA hybrid encryption schemes,”
Cryptology ePrint Archive, Report 2001/110, 2001, at
http://eprint.iacr.org/2001/110.ps

[9] K. Kurosawa and Y. Desmedt, “New Paradigm of Hybrid
Encryption Scheme,” in Advances in Cryptology

CRYPTO 2004, ser. Lecture Notes in Computer Science,
M. Franklin, Ed., vol. 4622. Springer-Verlag, 2004, pp.
426–442.

[10] MihirBellare and Phillip Rogaway, “Introduction to
Modern Cryptography,” in UCSD CSE 207 Course Notes,
2005, p. 207,
http://www.cs.ucdavis.edu/rogaway/classes/227/spring05/
book/main.pdf

[11] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method
for obtaining digital signatures and public key
cryptosystems,” Comm. ACM, vol. 21, issue 2, pp. 120–
126, Feb. 1978.

[12] S. Subasree and N. K. Sakthivel, “Design of a New
Security Protocol Using Hybrid Cryptography
Algorithms,” International Journal of Research and

Reviews in Applied Sciences, vol. 2, no. 2, February 2010.
[13] Onwutalobi Anthony-Claret Department of Computer

Science University of Wollongong “Using Encryption
Technique”

[14] Whitfield Diffie & Martin E. Hellman “Privacy and
Authentication: An Introduction to Cryptography”,
proceedings of the IEEE, vol.67, no.3, 1979.

[15] Key (cryptography) - Wikipedia, the free encyclopedia at
http://en.wikipedia.org/wiki/Key_(cryptography)

[16] RSA - Wikipedia, the free encyclopedia at
http://en.wikipedia.org/wiki/RSA.

http://en.wikipedia.org/wiki/Dumpster_diving
http://en.wikipedia.org/wiki/Social_engineering_%28computer_security%29

IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 15, Issue 6 (Nov. - Dec. 2013), PP 27-33

www.iosrjournals.org

www.iosrjournals.org 27 | Page

An Efficient implementation of PKI architecture based Digital

Signature using RSA and various hash functions (MD5 and SHA

variants)

Sankalp Prakash1, Mridula Purohit2
1
(Computer Science & Engineering, Jagannath University, Jaipur, Rajasthan, India)

2
(Mathematics Department, Vivekanand Institute of Technology (East), Jaipur, Rajasthan, India)


Abstract: Digital Signature technique is widely being used to detect unauthorized modification to data and to

authenticate the identity of the signatory. It is essential for secure transaction over unsecure/ open networks.

Digital Signature schemes are mostly used in cryptographic protocols to provide services like entity

authentication, authenticated key transport and key agreement. The PKI (Public Key Infrastructure) based

digital signature architecture is related with RSA algorithm and secure Hash functions (MD5 &, SHA variants).

RSA digital signature algorithm is an asymmetric cryptographic method whose security is associated with

difficulty of factorization and hash function is applied to the message to yields a fixed-size message digest. This

paper explores the PKI architecture based digital signature and presents an efficient way of its implementation

and discusses various issues associated with signature schemes based upon RSA and hash functions. The results

show that signing and verification are much faster in the developed application.

Keywords: Digital Signature, MD5, RSA, SHA1, SHA2

I. Introduction
In this fast-paced technological world the importance of information and communication systems is

escalating with the increasing significance and quantity of data that is transmitted to minimize operational cost
and provide enhanced services. Unfortunately the vulnerability of systems and data are highly rising due to
variety of threats, such as unauthorized access and use, destruction, alteration and misappropriation.
Cryptography is the foundation of all data as well as information security aspects. A digital signature is an
important type of authentication in the public key cryptographic system and it is widely used around the world.
(Bruce Schneier, 1996; W.C.Cheng, C.F.Chou and L.Golubchik, 2002) .

By allowing the exchange of information more quickly, easily, and dependably than ever before, the
Internet has forever changed the way of business and transactions. Electronic transactions are gaining in
importance as nations around the globe because of significantly reducing the need for paper documentation
while providing the opportunity for tremendous efficiency and productivity gains. As a result, digital signatures
are poised to enter the mainstream as primary vehicle for establishing trust for a wide variety of electronic
transactions. (Burton S. Kaliski, 2001; Rivest, Shamir, & Adleman, 1978) The information handled in electronic
transactions is valuable and sensitive and must be protected against tampering by malicious third parties (who
are neither the senders nor the recipients of the information). Sometimes, there is a need to prevent the
information or items related to it (such as date/time it was created, sent and received) from being tampered with
by the sender and/or the recipient. (S. R. Subramanya and Byung K. Yi, 2006)

A digital signature is a checksum which depends on the time period during which it was produced
(Denning, 1984) . It is computed using a set of rules and a set of parameters such that the identity of the
signatory and integrity of the data can be verified (Biometrics: the Future of Identification, 2000).

II. PKI ARCHITECTURE BASED DIGITAL SIGNATURE
The notion of digital signatures goes back to the beginning of public-key cryptography. In their

landmark paper Whitfield Diffie and Martin Hellman (W.Diffie & M.E.Hellman, 1976) introduced the idea that
someone could form a digital signature using public-key cryptography that anyone else could verify but which
no one else could generate. After it RSA (Rivest, Shamir, & Adleman, 1978) has become the most proven and
most popular, and achieved the widest adoption by standards bodies and in practice. (Burton S. Kaliski, 2001)

PKI is mainly used for secure transactions between companies or governmental agencies. An
ecommerce Web site that uses SSL for encryption is a portion of PKI system. Encrypted e-mail is also another
transaction that may be a part of a PKI system. Some companies or agencies may want all staff to digitally sign
any documents they have created. Because a digital signature is derived from a Digital Certificate and its key,

An Efficient implementation of PKI architecture based Digital Signature using RSA and various hash

www.iosrjournals.org 28 | Page

this is also part of a PKI system. There are so many possible scenarios and solutions it’s almost impossible to
list them all (Prakash Kuppuswamy, Peer Mohammad Appa and Saeed Q Y Al-Khalidi, 2012). PKI includes the
mechanics described in this article as well as an ensemble of software, hardware and processes governed by
rules and standards converging to the high level of Trust required and expected by the Industry. (CGI Group
Inc., 2004) The RSA public-key cryptosystem and digital signature scheme are widely deployed today and have
become essential building blocks for creating the emerging public-key infrastructure (PKI). (Burton S. Kaliski,
2001) In this paper the PKI (Public Key Infrastructure) based digital signature architecture has been discussed
which is related with RSA algorithm and secure Hash functions (MD5 &, SHA variants).

Basically, the idea behind digital signatures is the same as handwritten signature which are traditionally
used to validate and authenticate paper documents. A major difference between handwritten and digital
signature is that a digital signature cannot be constant; it must be a function of the document that is sign.
(Hemant Kumar, Ajit Singh, 2012) It is used to authenticate the fact that you promised something that you can’t
take back later. For electronic documents, a similar mechanism is necessary. Digital signatures, which are
nothing but a string of ones and zeroes generated by using a digital signature algorithm, serve the purpose of
validation and authentication of electronic documents. Validation refers to the process of certifying the contents
of the document, while authentication refers to the process of certifying the sender of the document. (S. R.
Subramanya and Byung K. Yi, 2006)

A digital signature is an electronic analogue of a written signature; the digital signature can be used to
provide assurance that the claimed signatory signed the information. In addition, a digital signature may be used
to detect whether or not the information was modified after it was signed i.e. to detect the integrity of the signed
data. (Digital Signature Standard (DSS), June, 2009) In the situation where there is not complete trust between
sender and receiver, something more than authentication is needed and the most attractive solution for this
problem is the digital signature. Mainly digital signature is use in e-mail, electronic data interchange, software
distribution, and other applications that require data integrity assurance and data origin authentication. The
wireless protocols, like HiperLAN/2 (Martin Johnsson), and WAP (WAP Forum :), have specified security
layers and the digital signature algorithm have been applied for the authentication purposes. (Hemant Kumar,
Ajit Singh, 2012)

It must have some salient features such as verify the author and the date and time of signature;
authenticate the contents at the time of signature; must be verifiable by third parties, to resolve disputes; it must
be a bit pattern that depends on the message of being signed; must use some information unique to sender, to
prevent both forgery and denial; must be relatively easy to produce to recognize and verify digital signature but
computationally infeasible to forge it and must have legitimate concern.

A digital signature can also be used to verify that information has not been altered after it was signed.
A digital signature is an electronic signature to be used in all imaginable type of electronic transfer. Digital
signature significantly differs from other electronic signatures in term of process and results. These differences
make digital signature more serviceable for legal purposes.

Digital signatures are based on mathematical algorithms which includes a signature generation process
and a signature verification process. A signatory uses the generation process to generate a digital signature on
data; a verifier uses the verification process to verify the authenticity of the signature. These require the
signature holder to have a key-pair (one private and one public key) for signing and verification. (Bruce
Schneier, 1996; Rivest, Shamir, & Adleman, 1978; Digital Signature Standard (DSS), June, 2009)

Basic idea of digital signatures is each signer has a unique key called private key. There is also other
part of key called public key. Whenever singer has to authenticate a document it creates a bit string called
signature by applying his private key on the message or some hashed image of message as shown in Fig.1a.
User who receives this message then applies his public key on the signature and checks the validity of the bit-
string as shown in Fig.1b. If receiver is convinced that document is signed by legitimate signer, it accepts the
document. Later if there is some dispute between sender and receiver regarding the validity of document, a third
party inspects the signature and using the public key of signer verifies the signature. (Alfred J. Menezes, Paul C.
van Oorschot and Scott A. Vanstone, 1997; William Stallings, Nov. 2005; Rania Salah El-Sayed, Moustafa Abd
El-Aziem and Mohammad Ali Gomaa, 2008)

(a) Creating a Digital Signature

Message

Hash

Function

(MD5,

SHA)

Hash

Result

Digital

Signature

Message

+

Digital

Signature

Signer’s Private Key

 T
o

V
erifier

An Efficient implementation of PKI architecture based Digital Signature using RSA and various hash

www.iosrjournals.org 29 | Page

It has three phases namely (1) Key Generation (2) Signature Generation (3) Signature Verification. The Key

Generation phase is the foundation phase for it.
1.1. Key-pair Generation

To generate key-pair for digital signature - RSA algorithm (Rivest, Shamir, & Adleman, 1978), most
widely-used public key cryptography algorithm in the world, is used. The idea is that it is relatively easy to
multiply prime numbers but much more difficult to factor. Multiplication can be computed in polynomial time
where as factoring time can grow exponentially proportional to the size of the numbers. The algorithm is as
follows:

a. Select p, q such that p and q both are primes and p ≠ q.
b. Calculate n = p x q.
c. Calculate Φ(n) = (p -1) x (q - 1).
d. Select integer e such that gcd(Φ(n),e)=1 and where 1 < e < Φ(n).
e. Calculate d = e-1 mod Φ(n). i.e. ed = 1 mod Φ(n)
f. Public key KU = {e, n}.
g. Private key KR = {d, n}.

The Fig.2 shows the data flow diagram of key-pair generation in proposed RSAAPP.

Figure 2: DFD for Key-Pair Generation in RSAAPP

1.2. Signature Generation

a. Given a message m, we apply a suitable hash function H (MD5, SHA1 or SHA2) to obtain the hash
result M = H(m).

b. To sign a message m, we use M < n to compute Signature (S) = Md (mod n) where d is the private
key of the signer.

The Fig.3 shows the data flow diagram of Signature Generation in proposed RSAAPP.

Figure 3: DFD for Signature Generation in RSAAPP

(b) Verifying a Digital Signature

Figure 1 : Generalized signature Generation and Verification

Message

+

Digital

Signature

Signer’s Private Key

F
ro

m

S
ig

n
er

Hash

Function

(MD5,

SHA)

Hash

Result

Verify

Function

(RSA)

Valid

(y/n)?

An Efficient implementation of PKI architecture based Digital Signature using RSA and various hash

www.iosrjournals.org 30 | Page

1.3. Signature Verification

a. To verify the message m, we use the digital signature S to compute M = Se (mod n) where e is the
public key of the signer.

b. Then we obtain M' = H(M) and compare it with M.
c. If both are same then the message is authentic otherwise it is tempered.

The Fig.4 shows the data flow diagram of Signature Generation in proposed RSAAPP.

Figure 4: DFD for signature Verification in RSAAPP

III. HASH FUNCTIONS (MD5, SHA1 AND SHA2)
A typical hash function takes a variable length message and produces a fixed length hash. Given the

hash, it is impossible to find a message with that hash; in fact one cannot determine any usable information
about a message with that hash, not even a single bit. Hash function are used to digest or condense a message
down to a fixed size, which then be signed, in a way that makes finding other messages with the same hash
extremely difficult (so the signature would not apply easily to other messages). Any cryptographic hash function
H has 3 important properties: (1) given message P, it is easy to compute H(P) (2) given H(P), it is effectively
impossible to compute P and (3) no one can generate two messages that have the same message digest.

1.4. MD5 Hash Function

The algorithm takes as input a message of arbitrary length and produces as output a 128-bit
"fingerprint" or "message digest" of the input. It is conjectured that it is computationally infeasible to produce
two messages having the same message digest, or to produce any message having a given prespecified target
message digest. The MD5 algorithm is intended for digital signature applications, where a large file must be
"compressed" in a secure manner before being encrypted with a private (secret) key under a public-key
cryptosystem such as RSA. (Ronald L.Rivest) The summery of the MD5 hash function is:

F(x, y, z) = (x AND y) OR ((NOT x) AND z)
G(x, y, z) = (x AND z) OR (y AND (NOT z))
H(x, y, z) = x XOR y XOR z
I(x, y, z) = y XOR (x OR (NOT z))

1.5. SHA1 Hash Function

NIST, along with NSA, designed the Secure Hash algorithm (SHA1) for use with the digital signature
standard. The algorithm published in 1995 in FIPS PUB 180-1 is commonly referred to as SHA-1.

When a message of any length < 2^64 bits is input, the SHA-1 produces a 160-bit output called a message
digest. The message digest can then, for example, be input to a signature algorithm which generates or verifies
the signature for the message. Signing the message digest rather than the message often improves the efficiency
of the process because the message digest is usually much smaller in size than the message. The same hash
algorithm must be used by the verifier of a digital signature as was used by the creator of the digital signature.
Any change to the message in transit will, with very high probability, result in a different message digest, and
the signature will fail to verify. (Donald E.Eastlake and Paul E.Jones, Sept. 2001) SHA-1 uses a sequence of
logical functions, f0, f1,…, f79. Each function ft, where 0 ≤ t < 79, operates on three 32-bit words, x, y, and z, and
produces a 32-bit word as output. The function ft(x, y, z) is defined as follows: (Secure Hash Standard, United
States of America, National Institute of Science and Technology, Federal Information Processing Standard
(FIPS) 180-1, April 1993)

 Ch(x, y, z) = (x AND y) OR ((NOT x) AND z) (0 <= t <= 19)

ft(x, y, z) = Parity(x, y, z) = x XOR y XOR z (20 <= t <= 39)
 Maj(x, y, z) = (x AND y) OR (x AND z) OR (y AND z) (40 <= t <= 59)
 Parity(x, y, z) = x XOR y XOR z (60 <= t <= 79)

An Efficient implementation of PKI architecture based Digital Signature using RSA and various hash

www.iosrjournals.org 31 | Page

1.6. SHA2 Hash Function

In 2005, cryptanalysts found attacks on SHA-1 suggesting that the algorithm might not be secure
enough for ongoing use. (Bruce Schneier, 2005) NIST required many applications in federal agencies to move
to SHA-2 after 2010 because of the weakness.

SHA-2 is a set of cryptographic hash functions (SHA-224, SHA-256, SHA-384 and SHA-512) designed by
the U.S. National Security Agency (NSA) and published in 2001 by the NIST as a U.S. Federal Information
Processing Standard (FIPS) PUB 180-2. But in the proposed RSAAPP we use SHA-256.

SHA-256 uses six logical functions, where each function operates on 32-bit words, which are represented as
x, y, and z. The result of each function is a new 32-bit word. (Secure Hash Standard, United States of America,
National Institute of Science and Technology, Federal Information Processing Standard (FIPS) 180-2, 2002)

IV. THE DEVELOPED APPLICATION (RSAAPP)
To test and compare the performance characteristics of the RSA and discussed signature algorithms, we

developed application RSAAPP using C language with windows API (Charles Petzold, Nov. 1998). The key
generation process generates the public and private keys in pairs. If required the keys can be viewed in hex
format after generation. The corresponding private keys generated are encrypted using DES after taking an 8-
character password as user input. Both keys are made read only. The proposed application can be used encrypt
any kind of data i.e. text or binary. It uses SHA2, SHA1 and MD5 hash algorithms for the digital signature.
SHA2 is much more secure then SHA1 and MD5. After key generation the Signature Generation module is
processed for the file which is to be signed by the signer and sent to the recipient. Further at the receiving end
the recipient verifies the signature by execution of Signature Verification process to authenticate that the file has
been send by the authentic sender and to validate that the file has been tampered or not. The figures below
shows the execution of the developed application i.e. RSAAPP-

Figure 5: Result of the Key Generation

http://en.wikipedia.org/wiki/SHA-2

An Efficient implementation of PKI architecture based Digital Signature using RSA and various hash

www.iosrjournals.org 32 | Page

(a) Signature Generation module of RSAAPP

(b) Completion of Signature Generation of RSAAPP
Figure 6: Signature Generation module of RSAAPP

Figure 7: Signature Verification module of RSAAPP

V. EXPERIMENTAL RESULTS
 The test results of the developed program RSAAPP for signature generation and signature verification

using MD5, SHA1 and SHA2 are tabulated in seconds as shown in Table1. Three files of different size are
chosen randomly from Calgary Corpus (Ian Witten, Timothy Bell and John Cleary, 2013) which is a collection
of text and binary data files. Tests are preformed on an Intel P4 1.7GHz machine with 1GB of RAM with key
size 1024 bits. Time taken in RSA 1024 bit key generation is 2.2 seconds. The experiment results with MD5,
SHA1 and SHA2 hash functions are tabulated in seconds as shown in Table1.

Table 1: Experimental Results
Filename with size MD5 SHA1 SHA2

Sign. Gen. Sign. Verify Sign. Gen. Sign. Verify Sign. Gen. Sign. Verify
paper4 (12.9 KB) 0.381 0.02 0.381 0.03 0.481 0.02
news (368 KB) 0.430 0.04 0.511 0.05 0.411 0.03
book1 (596 KB) 0.461 0.06 0.571 0.06 0.421 0.06

VI. CONCLUSION
The experimental results shows that the RSA key (1024 bits), signature generation and signature

verification with different hash functions – MD5, SHA1 and SHA2 are quite fast in developed RSAAPP. The
cost of signature generation can be considered as a factor in the choice of signature system.
The developed RSAAPP system achieves high security for digital signature in addition to decrease processing
time and computational overheads. And an intruder cannot pose the message sent since the sender’s private key
is unknown for him. Accordingly, the sender cannot be impersonated. On the receiver part, the message is
verified by using sender’s public key and his private key to decrypt the message successfully.

An Efficient implementation of PKI architecture based Digital Signature using RSA and various hash

www.iosrjournals.org 33 | Page

Acknowledgements
The authors are extremely express gratitude to all those people and everyone who support directly or

indirectly during the research work that “May god gives them long and prosperous life to spread the light of
their intellectuality” and we are forever indebted for their efforts on my behalf, we have learned a great deal
from them.

REFERENCES
[1] Bruce Schneier, Applied Cryptography Protocols, Algorithms, and Source Code in C, 2nd ed. John Wiley & Sons, 1996.
[2] W.C.Cheng, C.F.Chou and L.Golubchik, "Performance of Batch-based Digital Signatures," in 10th IEEE International Symposium

on Modeling , 2002.
[3] Burton S. Kaliski, "RSA Digital Signatures," Dr. Dobb's Journal, May 2001,

collabroation.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2001/0105/0105c/0105c.htm.
[4] R. L. Rivest, A. Shamir, and L. M. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems," Comm.

of the ACM, vol. 21, no. 2, pp. 120-126, 1978.
[5] S. R. Subramanya and Byung K. Yi, "Digital Signatures," IEEE Potentials, vol. 06, pp. 5-8, Apr. 2006.
[6] D. E. Denning, "Digital signature with RSA and other Public-key cryptosystems," Comm. of the ACM, vol. 27, no. 4, pp. 388-392,

Apr. 1984.
[7] "Biometrics: the Future of Identification," IEEE Computer, vol. 33, pp. 46-81, 2000.
[8] W.Diffie and M.E.Hellman, "New Directions in Cryptography," IEEE Transactions Information Theory, vol. 22, no. 6, pp. 644-654,

Nov. 1976.
[9] Prakash Kuppuswamy, Peer Mohammad Appa and Saeed Q Y Al-Khalidi, "A New Efficient Digital Signature Scheme Algorithm

based on Block cipher," IOSR Journal of Computer Engineering, vol. 7, no. 1, pp. 47-52, Nov. 2012.
[10] CGI Group Inc. (2004) Public Encryption and Digital Signature: How do they work?. [Online]. http://www.cgi.com/files/white-

papers/cgi_whpr_35_pki_e.pdf
[11] Hemant Kumar, Ajit Singh, "An Efficient Implementation of Digital Signature Algorithm with SRNN Public Key Cryptography,"

International Journal of Research Review in Engineering Science and Technology, vol. 1, no. 1, pp. 54-57, Jun. 2012.
[12] "Digital Signature Standard (DSS)," National Institute of Standards and Technology FIBS PUB 186-3, June, 2009.
[13] Martin Johnsson. “HiperLAN/2 – The Broadband Radio Transmission Technology Operating in the 5 GHz Frequency Band”,

HiperLAN/2 Global Forum,Version 1.0 white-paper, 1999. [Online]. http://www.hiperlan2.com/technology.asp
[14] WAP Forum :. "Wireless Application Protocol Architecture Specification” and “WAP White Paper”. www.wapforum.org.
[15] Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone, Handbook of Applied Cryptography. CRC Press, 1997.
[16] William Stallings, Cryptography and Network Security Principles and Practices, 4th ed. Prentice Hall, Nov. 2005.
[17] Rania Salah El-Sayed, Moustafa Abd El-Aziem and Mohammad Ali Gomaa, "An Efficient Signature System using Optimized RSA

Algorithm," International Journal of Computer Science and Network Security, vol. 8, no. 12, 2008.
[18] Ronald L.Rivest. The MD5 Message-Digest Algorithm, RFC 1321, April 1992,. [Online]. http://www.faqs.org/rfcs/rfc1321.html
[19] Donald E.Eastlake and Paul E.Jones, "US Secure Hash Algorithm 1 (SHA1)," Sept. 2001, RFC 3174.
[20] Secure Hash Standard, United States of America, National Institute of Science and Technology, Federal Information Processing

Standard (FIPS) 180-1, April 1993. [Online]. http://www.itl.nist.gov/fipspubs/fip180-1.htm
[21] Bruce Schneier. (2005, Feb.) Schneier on Security: Cryptanalysis of SHA-1. [Online].

https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
[22] Secure Hash Standard, United States of America, National Institute of Science and Technology, Federal Information Processing

Standard (FIPS) 180-2, 2002. [Online]. http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
[23] Charles Petzold, Programming Windows, 5th ed. Microsoft Press, Nov. 1998.
[24] Ian Witten, Timothy Bell and John Cleary. (2013) The Data Compression Resource on the Internet. [Online]. http://www.data-

compression.info/Corpora/CalgaryCorpus/

Sankalp Prakash is a Research Scholar. He has completed M. Tech. in Computer Science from Rajasthan
Vidyapeeth, Udaipur (Rajasthan), India in the year 2006 and pursuing PhD in Computer Science and Engineering from
Jagannath University, Jaipur (Rajasthan), India. His major field of study is Cryptography and Computer Networks. Mr.
Prakash is member of Computer Society of India (CSI), International Association of Engineers (IAENG) and
Institution of Engineers (INDIA).

Dr. Mridula Purohit got post graduation degree in 1996 and doctorate in mathematics in 2000 from university of Rajasthan, Jaipur
(Rajasthan), India. Her major field of study is Discrete Mathematic, Differential Equations, Special Functions, Polynomials, Cryptography
and Communications. Presently she is a professor in Department of Mathematics at Vivekanand Institute of Technology (East), Jaipur
(Rajasthan), India. She got more than 15 years of teaching experience. She has published more than 12 papers in International and National
Journals and 04 text books. Recently she is working on research project titled “Applications of wavelet transforms in various fields of
Science & Technology” awarded by All India Council for Technical Education, Government of India, New Delhi (India).

http://www.cgi.com/files/white-papers/cgi_whpr_35_pki_e.pdf
http://www.cgi.com/files/white-papers/cgi_whpr_35_pki_e.pdf
http://www.hiperlan2.com/technology.asp
http://www.faqs.org/rfcs/rfc1321.html
http://www.itl.nist.gov/fipspubs/fip180-1.htm
https://www.schneier.com/blog/archives/2005/02/cryptanalysis_o.html
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://www.data-compression.info/Corpora/CalgaryCorpus/
http://www.data-compression.info/Corpora/CalgaryCorpus/

	Non Colored Pages
	All Published Papers
	pxc3883776
	Applied_Hybrid_Cryptography_in_Key-pair (at jimsindia.org8i_current_Issue.aspx) Volume 1, Issue 1 (January – June, 2013)
	E01562733

